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Newtonian theories of motion02
CHAPTER

An understanding of forces and fields has allowed humans to land on the Moon 
and explore the outer reaches of the solar system. Satellites in orbit around the 
Earth have changed the way people live. These advances have been achieved 
using Newton’s laws of motion, which were published in the seventeenth century. 
Newton suggested that it should be possible to put satellites in orbit around the 
Earth almost 300 years before it became technically possible. While relativistic 
corrections introduced by Einstein are important in a limited number of contexts, 
Newton’s description of gravitation and the laws governing motion are accurate 
enough for most practical purposes.

In this chapter Newton’s laws will be used to analyse motion when two or more 
forces act on a body and how projectiles travel in the Earth’s gravitational field. The 
chapter also covers how forces keep objects travelling in a circular path.

Key knowledge
• investigate and apply theoretically and practically Newton’s three laws of 

motion in situations where two or more coplanar forces act along a straight line 
and in two dimensions 2.1

• investigate and analyse theoretically and practically the uniform circular motion 

of an object moving in a horizontal plane: (Fnet =
mv2

r
), including:

 – a vehicle moving around a circular road 2.2

 – a vehicle moving around a banked track 2.3

 – an object on the end of a string 2.2

• investigate and apply theoretically Newton’s second law to circular motion in a 
vertical plane (forces at the highest and lowest positions only) 2.4

• investigate and analyse theoretically and practically the motion of projectiles 
near Earth’s surface, including a qualitative description of the effects of air 
resistance 2.5, 2.6
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2.1 Newton’s laws of motion
On 14 July 2015, NASA’s New Horizons spacecraft (Figure  2.1.1) sped past 
Pluto and sent back images to Earth that appeared on news broadcasts across the 
world. The principles of physics on which this mission depended were published 
by Isaac Newton in 1687 in a set of laws that radically challenged the understanding 
of his time.

Newton’s laws are, in fact, only an approximation and have been superseded by 
Einstein’s relativistic theories. In situations involving extremely high speeds (greater 
than 10% of the speed of light) or strong gravitational fields, Newton’s laws are 
imprecise, and Einstein’s theories must be used instead. However, Newton’s laws 
are not obsolete. In most cases, Newton’s laws remain invaluable for describing the 
motion of objects as diverse as planets and ping-pong balls.

NEWTON’S THREE LAWS OF MOTION
Newton’s three laws of motion describe how forces affect the motion of bodies. The 
first law describes what happens to a body when there is no net force on it. The 
second law explains motion when there is an unbalanced force acting on a body. 
The third law states that all forces act in action–reaction pairs (that is, for every 
action there is an equal but opposite reaction).

Newton’s first law
Newton’s first law states that every object continues to be at rest, or continues with 
constant velocity, unless it experiences an unbalanced force. This is also called the 
law of inertia. An object that is moving at constant velocity will keep moving. This 
is seldom observed in everyday life due to the presence of forces such as friction 
and air resistance which eventually slow the motion of the object. To maintain 
constant motion, frictional forces must be balanced with some other force. For 
example, an object can keep moving at a constant velocity if it is driven by a motor.

An object that is stationary will remain stationary while the forces acting on 
it are balanced. For example, an object will fall due to the force of gravity, but it 
will remain at rest when this force is balanced by the normal force applied by a 
table on which the object comes to rest. A normal force is one that exists between a 
surface and an object, and it always act at right angles to the surface.

Newton’s second law
Newton’s second law states that the acceleration of a body experiencing an 
unbalanced force is directly proportional to the net force acting on it and inversely 

proportional to the mass of the body, i.e. a = Fnet
m . This is commonly written as 

follows.

FIGURE 2.1.1 An artist’s impression of New Horizons flying past Jupiter on its way to Pluto

REVISION

Equations of 
motion
The equations of motion can be 
used in situations where there 
is a constant acceleration a (in 
m s−2). These equations allow 
you to model the motion of 
objects and predict values for the 
initial velocity u (in m s−1), final 
velocity v (in m s−1), displacement 
s (in m) and time t (in s). A 
direction convention should 
also be followed when using the 
equations of motion.

The equations of motion for 
uniform acceleration are:

v = u + at

s = 1
2 (u + v)t

s = ut + 1
2 at2

v2 = u2 + 2as

These equations will be used 
in this chapter in addition to a 
number of new equations.
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Fnet = ma
where Fnet is the net or resultant force acting (N)
 m is the mass of the object (kg)
 a is the acceleration of the object (m s−2)

In other words, an object will accelerate at a greater rate when the force acting 
on it is increased. Heavy objects are harder to accelerate than lighter ones, so the 
rate of acceleration decreases as mass increases.

Newton’s third law
Newton’s third law states that when one body exerts a force on another body (an 
action force), the second body exerts an equal force on the first body but in the 
opposite direction (a reaction force):

Fon A by B = −Fon B by A

To simplify the notation, this text will use the following convention:
FAB = Fon A by B

In this convention, the first subscript always indicates the body experiencing 
the force.

The forces in an action–reaction pair:
• are the same magnitude
• act in opposite directions and
• are exerted on two different objects.

It is important to note that action–reaction pairs can never be added together. 
This is because they act on different bodies. This is explained in Figure 2.1.2. In 
Figure 2.1.2 (b) the pair of forces shown, Fg and FN, are not an action–reaction pair 
because both forces act on the same object (the basketball).

(a) (b) FN

Fg

FIGURE 2.1.2 (a) An action–reaction pair: the hand pulls on the spring and the spring pulls back on 
the hand with an equal and opposite force. Figure (b) does not show an action-reaction pair. This is 
because the force due to gravity and the normal force both act on the same object, the basketball.

PHYSICSFILE

Tethered spacewalks
When stationed on the International 
Space Station (ISS), astronauts are 
often required to conduct spacewalks, 
that is, they need to complete tasks 
outside their spacecraft. During 
spacewalks, astronauts are tethered 
(i.e. attached) to their spacecraft. If 
they weren’t, they would float off into 
space (remember Newton’s first law of 
motion!). All the astronaut’s tools are 
attached to their spacesuits, otherwise 
they too would float off into space. If an 
astronaut were to become accidentally 
untethered, it could be a disaster. 
Without a surface to push against, the 
astronaut would float off into space and 
be unable to return to the spacecraft. 
As a safety precaution, every astronaut 
is fitted with a small jet pack they can 
use to manoeuvre themselves back to 
their spacecraft. The jet pack propels 
the astronaut forward when it is fired 
backwards (remember Newton’s third 
law of motion).

While the force is the same size on both objects, the resulting acceleration may 
not be. That is because the rate of acceleration depends on the mass of the objects 
concerned (from Newton’s second law). Sometimes, when the objects have very 
different masses, the effect of one force in an action–reaction pair is much more 
noticeable. For example, if you stub your toe on a large heavy rock, the force exerted 
on your toe by the rock causes your foot to decelerate significantly. The equal and 
opposite force exerted by your toe on the rock does not cause any significant 
acceleration of the rock. This is because of its much greater mass.

 Fon A by B = −Fon B by A
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Worked example 2.1.1

APPLICATION OF NEWTON’S FIRST AND THIRD LAWS

A toddler drags a 4.5 kg cart of blocks across a floor at a constant speed of 
0.75 m s−1. It is being dragged by a handle which is at an angle of 35° above the 
horizontal. The force of friction between the cart and the floor is 5.0 N.

a Calculate the net force on the cart.

Thinking Working

The cart has constant speed, 
i.e. no acceleration. According 
to Newton’s first law, the net 
force acting on the cart must 
be zero.

Fnet = 0 N

b Calculate the force that the toddler exerts on the cart.

Thinking Working

Draw a force diagram.

FCT

FCTx
FCF

35°

If the net force is zero then 
the horizontal forces must 
be balanced. Therefore the 
horizontal component of the 
force on the cart by the toddler, 
FCTx, is equal to the magnitude 
of the frictional force, FCF.

FCTx = FCT cos35° = FCF

FCT cos35° = 5.0N

FCT = 5.0
cos35°

= 6.1N 35° above the horiztonal

c Determine the force that the cart exerts on the toddler.

Thinking Working

According to Newton’s third 
law, the force on the cart by the 
toddler is equal and opposite 
to the force on the toddler by 
the cart.

FCT = −FTC

Since the force on the cart is at an angle of 
35° above the horizontal, the force of the 
cart on the toddler is 6.1 N at an angle of 35° 
below the horizontal.

Worked example: Try yourself 2.1.1

APPLICATION OF NEWTON’S FIRST AND THIRD LAWS

The toddler adds extra blocks to the cart and drags it across the floor more slowly. 
The 5.5 kg cart travels at a constant speed of 0.65 m s−1. The force of friction 
between the cart and the floor is 5.2 N and the handle is now at an angle of 30° 
above the horizontal.

a Calculate the net force on the cart.

b Calculate the force that the toddler exerts on the cart.

c Determine the force that the cart exerts on the toddler.
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Applying Newton’s first or second laws
When solving motion problems, a key strategy is to determine whether Newton’s 
first law or second law should be applied. In the following examples, the objects 
in the questions are accelerating. Hence the second law should be used and the 
net force is proportional to the acceleration. In problems involving connected 
bodies, both the whole system and each component of the system have the same 
acceleration.

Worked example 2.1.2

APPLICATION OF NEWTON’S LAWS

A vehicle towing a caravan accelerates at 1.8 m s−2 in order to overtake the car in 
front. The vehicle’s mass is 2700 kg and the caravan’s mass is 2000 kg. The drag 
force on the vehicle is 1100 N and the drag force on the caravan is 1500 N.

a Calculate the driving force of the engine.

Thinking Working

Draw a sketch showing all 
forces acting.

caravan
m = 2000 kg

vehicle 
m = 2700 kg

FC drag FC tension

FV tension FV driving force = ?

FV drag

1500 N 1100 N

a = 1.8 m s–2

Since there is an 
acceleration, Newton’s 
second law can be 
applied to the whole 
system.

Note that the caravan 
and vehicle are joined 
by a coupling and so the 
tension forces are not 
included at this stage. 
Consider the system as a 
whole.

Fsystem = msystema

FV driving force − FV drag − FC drag = (mV +mC )a

FV driving force −1100 −1500 = (2700 + 2000) ×1.8

FV driving force =1.1×104 N in the direction of motion

b Calculate the magnitude of the tension in the coupling.

Thinking Working

Consider only one part of 
the system, for example 
the caravan, once again 
applying Newton’s second 
law.

FC net = mCa

FC tension − FC drag = mCa

FC tension = 2000 ×1.8 +1500

= 5.1×103N

Worked example: Try yourself 2.1.2

APPLICATION OF NEWTON’S LAWS

A vehicle towing a trailer accelerates at 2.8 m s−2 in order to overtake a car in front. 
The vehicle’s mass is 2700 kg and the trailer’s mass is 600 kg. The drag force on 
the vehicle is 1100 N and the drag force on the trailer is 500 N.

a Calculate the driving force of the engine.

b Calculate the magnitude of the tension in the coupling.
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THE NORMAL FORCE AND INCLINED PLANES
One reaction force deserves a special mention. When an object exerts a force on 
a surface, the surface exerts a force back on the object that is at right angles (i.e. 
normal) to the surface. For example, the block in Figure 2.1.3(a) exerts a force on 
the level surface and the surface exerts a normal force back on the block. The force 
the block exerts on the surface is equal in size to the force due to gravity, Fg. Thus 
Fg is balanced by FN, as shown in the figure. As there is no net force on the block, 
the object remains stationary.

Consider an inclined plane (Figure 2.1.3(b)). The normal force is still at right 
angles to the surface. However, as the surface is not horizontal, FN will be at an angle 
to Fg. There is a net force down the slope and the block accelerates, as predicted by 
Newton’s second law.

Another way of viewing the forces along an inclined plane is to resolve the vector 
of the force due to gravity, Fg, into two components: one perpendicular to the slope 
and one parallel to the slope (Figure 2.1.4). The component perpendicular to the 
surface is balanced by the normal force FN. The component of the force due to 
gravity that is parallel to the slope is the force that actually causes the acceleration.

Worked example 2.1.3

INCLINED PLANES

A skier of mass 50 kg is skiing down an icy slope that is inclined at 20° to the 
horizontal. Assume that friction is negligible and that the acceleration due to 
gravity is 9.8 m s−2.

g = 9.8 m s–2

acceleration

20° Fg = 490 N

FN

a Determine the components of the force due to gravity on the skier 
perpendicular to the slope and parallel to the slope.

Thinking Working

Draw a sketch and include the values 
provided.

Fg cos 20°

Fg sin 20°

Fg 20°

20°

Resolve the force due to gravity into 
the component perpendicular to the 
slope.

The perpendicular component is:

F⊥ = Fg cos20°

= 490cos20°
= 460

= 4.6 ×102N

Fnet = Fg + FN
 = 0

Fnet = Fg + FN

Fnet

θ

θ

FN

FN

FN

FN

Fg

Fg

Fg

Fg

body remains
at rest

(a)

(b)

FIGURE 2.1.3 (a) A block on a level surface 
experiences a net force of zero, as FN and 
Fg balance each other. (b) With the block on 
an incline, FN = Fg cos θ, and the net force is 
given by Fnet = Fg + FN added as vectors.

FN = Fg cos θ

Fg cos θ

Fg sin θ = Fnet

Fg

θ

θ

FIGURE 2.1.4 For a block on an incline, the 
force due to gravity can be resolved into a force 
perpendicular to the surface and a force parallel 
to the surface. Hea
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Resolve the force due to gravity into 
the component parallel to the slope.

The parallel component is:

F! = Fg sin20°

= 490sin20°
=168
=1.7 ×102N

b Determine the normal force that acts on the skier.

Thinking Working

The normal force is equal in 
magnitude to the perpendicular 
component of the force due to gravity.

FN = 4.6 x 102 N

c Calculate the acceleration of the skier down the slope.

Thinking Working

Apply Newton’s second law.

The net force along the plane is the 
component of the force due to gravity 
parallel to the slope.

a = Fnet

m

= 168
50

= 3.4ms−2 down the slope

Worked example: Try yourself 2.1.3

INCLINED PLANES

A skier of mass 85 kg travels down the same icy slope inclined at 20° to the 
horizontal. Assume that friction is negligible and that the acceleration due to 
gravity is 9.8 m s−2.

a Determine the components of the force due to gravity on the skier 
perpendicular to the slope and parallel to the slope.

b Determine the normal force that acts on the skier.

c Calculate the acceleration of the skier down the slope.

Aside from rounding differences, the acceleration calculated in the Worked 
example and Try yourself questions above are equal. This is because acceleration is 
independent of the mass of the object (if we ignore friction forces). Mathematically, 
the relationship can be written as follows.

a =
Fnet

m
=
mg sinθ
m

= g sinθ

where a is the acceleration of the object (m s−2)
 g is the acceleration due to gravity (m s−2)
	 θ is the angle of the inclined plane from the horizontal
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2.1 Review
SUMMARY

• Newton’s first law states that every object continues 
to be at rest, or continues with constant velocity, 
unless it experiences an unbalanced force. This is 
also called the law of inertia.

• Newton’s second law states that the acceleration 
of a body experiencing an unbalanced force is 
directly proportional to the net force on the body 
and inversely proportional to the mass of the body: 
Fnet = ma.

• Newton’s third law states that when one body exerts 
a force on another body (an action force), the second 
body exerts an equal force on the first body but in 
the opposite direction (a reaction force): FAB = −	FBA.

• The forces in an action–reaction pair are of the 
same magnitude, act in opposite directions and are 
exerted on two different objects.

• A normal force, FN, acts between an object and a 
surface at right angles to the surface.

 – On a horizontal surface, FN = Fg and the object is 
stationary.

 – On an inclined surface, FN is equal and opposite to 
the component of the force due to gravity acting 
perpendicular to the plane: FN = Fg cos θ

• The net force (Fnet) acting on an object on a plane 
inclined at an angle θ is Fg sin θ (assuming that 
friction is negligible).

OA
✓ ✓ 

KEY QUESTIONS

Knowledge and understanding
1 Phil is standing inside a tram when it starts off 

suddenly. Lisa, who is sitting down, comments that 
Phil was thrown backwards as the tram started 
moving. Is this a correct statement? Explain your 
answer in terms of Newton’s laws.

2 Consider an object of mass 5.3 kg sliding across 
a frictionless surface. What force is required to 
accelerate it at a rate of 2.2 m s–2?

3 On each of the following force diagrams, draw the 
reaction force that is the partner of the action force 
that is shown. For each force you draw, state what the 
force is acting on and what is providing the force.

F

Ff

FN

Fg

(c) (d)

(a) (b)

STRATEGIES FOR SOLVING FORCE AND MOTION PROBLEMS
Where forces on a body are given, Newton’s laws can be applied. Two questions 
should be asked:
1 Is the object stationary or travelling at constant velocity? In these cases Fnet = 0.
2 Is the object accelerating? In this case, Fnet = ma.

When dealing with connected bodies, consider the whole system first, and then 
consider the separate parts of the system.

For coplanar forces that are not aligned (for example, on an inclined plane), 
resolve forces into their components.

Newton’s second law can be used to find the acceleration of an object. It can then 
be used with the other equations of motion to find such quantities as displacement 
and final velocity.
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4 A table-tennis ball of mass 10 g is falling towards the 
ground at a constant speed of 8.2 m s−1. Calculate 
the magnitude and direction of the force due to air 
resistance acting on the ball.

5 Ishtar is riding a motorised scooter along a level 
path. The combined mass of Ishtar and her scooter is 
80.0 kg. The frictional and drag forces that are acting 
total 45.0 N. Determine the magnitude of the driving 
force provided by the motor under the following 
conditions.
a Ishtar is moving at a constant speed of 10 m s−1.
b Ishtar is accelerating at 1.50 m s−2.

6 A cyclist and his bike have a combined mass of 
80 kg. When starting off from traffic lights, the cyclist 
accelerates uniformly and reaches a speed of 7.5 m s−1 
in 5.0 s.
a What is the acceleration during this time?
b Calculate the driving force being provided by the 

cyclist’s legs as he starts off. Assume that drag 
forces are negligible during this time.

c The cyclist now rides at a constant speed of 
15 m s−1. If the force being provided by his legs is 
now 60 N, determine the magnitude of the drag 
forces that are acting.

7 During preseason football training, Matt was required 
to run dragging behind him a bag of sand of mass 
50 kg. The bag was attached to a rope which made an 
angle of 25° to the horizontal. When Matt ran with a 
constant speed of 4.0 m s−1, a frictional force of 60 N 
was acting on the bag.
a What was the net force acting on the bag?
b Calculate the size of the tension force that was 

acting in the rope.
c What was the magnitude of the force the rope 

exerted on Matt as he ran?

Analysis
8 A block on a table is accelerated by a falling mass, 

as shown below. Calculate the acceleration of the 
blocks and the tension in the cord if the block on the 
table experiences a frictional force of 2.0 N as it slides 
along.

1.0 kg

3.5 kg

9 A 950 kg car is used to tow along a small trailer of 
mass 100 kg. The car and trailer have an acceleration 
of 0.800 m s−2. The resistive forces acting on the car 
total 500 N. An additional 500 N of resistive forces act 
on the trailer.
a Calculate the driving force required by the car's 

engine.
b What tension exists in the tow rope between the car 

and trailer?

10 Kirsty is riding in a bobsled that is sliding down a 
snow-covered hill with a slope of 30° to the horizontal. 
The total mass of the sled and Kirsty is 100 kg. Initially 
the brakes are on and the sled moves down the hill 
with a constant velocity.

30°F

A

C

D

E

B

a Which one of the arrows (A–F) best represents the 
direction of the frictional force acting on the sled?

b Which one of the arrows (A–F) best represents the 
direction of the normal force acting on the sled?

c Calculate the net frictional force acting on the sled.
d Kirsty releases the brakes and the sled accelerates. 

What is the magnitude of her initial acceleration?
e Kirsty returns to the top of the hill. A friend now 

joins her in the bobsled taking the total mass 
to 140 kg. The bobsled takes off down the same 
slope and with the brakes off (thus friction can 
be ignored). How will the extra mass affect the 
acceleration of the bobsled?

Hea
ds

ta
rt



AREA OF STUDY 1   |   HOW DO PHYSICISTS EXPLAIN MOTION IN TWO DIMENSIONS? 70

2.2 Circular motion in a horizontal 
plane
Circular motion is common throughout the universe. Children on a fairground ride 
(Figure 2.2.1) move in a circular path, and so do those in a car as it travels around 
a roundabout. In athletics, hammer throwers swing the hammer in a circular path 
before releasing it. On a much larger scale, the planets orbit the Sun in paths that 
are approximately circular. On an even grander scale, stars can travel in circular 
paths around the centres of their galaxies. This section explains the nature of 
circular motion in a horizontal plane and applies Newton’s first and second laws to 
problems involving circular motion.

FIGURE 2.2.1 The people on this ride are travelling in a circular path.

UNIFORM CIRCULAR MOTION
In Figure  2.2.2, an athlete in a hammer-throw event swings a hammer—which 
is usually a steel ball—in a horizontal circle with a constant speed of 25 m s−1. 
Although its speed is constant, its velocity is continually changing. This means that 
it is accelerating.

Remember that velocity is a vector. Since the direction of the hammer is 
changing, so too is its velocity, even though its speed is not changing. The velocity 
of the hammer at any instant is tangential (i.e. at a tangent) to its path. At one 
instant, the hammer is travelling at 25 m s−1 north. An instant later it is travelling at 
25 m s−1 west, and then 25 m s−1 south, and so on.

FIGURE 2.2.2 The velocity of the hammer at any instant is tangential to its path and is continually 
changing even though it has constant speed. Because its velocity is changing, the hammer is 
accelerating.

(a) N

W E
S

C

25 m s–1

25 m s–1

25 m s–1

B

A

25 m s–1

(b)
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PERIOD AND FREQUENCY
Imagine that an object is moving in a circular path of radius r metres with a constant 
speed of v and takes T seconds to complete one revolution. The time taken to travel 
once around a circle is called the period, T, of the motion. The number of rotations 
each second is the frequency, f.

SPEED
An object that travels in a circle will travel a distance equal to the circumference 
of the circle, 2πr, with each revolution (Figure 2.2.3). Given that the time for each 
revolution is the period, T, the average speed of the object is:

speed = distance
time

= circumference
period

= 2π r
T

The average speed of an object moving in a circular path is:

v = 2πr
T

where v is the speed of the object (m s−1)
 r is the radius of the circle (m)
 T is the period of motion (s)

 f = 1
T

 and T = 1
F

 where f is the frequency (Hz)
  T is the period (s)

r

distance = 2πr v

FIGURE 2.2.3 The average speed of an 
object moving in a circular path is given by 
the distance travelled in one revolution (the 
circumference, 2π	r) divided by the time taken 
(the period, T ).

PHYSICSFILE

Wind generators
The wind generators in the figure below are part of a wind farm at Macarthur in south-
west Victoria. The wind farm has 140 turbines and the towers are 85 m high. Each 
blade is 55 m long and can rotate at a maximum rate of 20 revolutions per minute. 
Although the blades are moving in a vertical, not horizontal, plane, their motion can be 
described using the same equation for circular motion given here. From the information 
given, you should be able to calculate that the tip of each blade is travelling at around 
400 km h−1.

The tips of these wind-generator blades travel in a circular path and can reach speeds of 
approximately 400 km h−1.
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Worked example 2.2.1

CALCULATING SPEED

A wind turbine has blades 55.0 m in length that rotate at a frequency of 
20 revolutions per minute. At what speed do the tips of the blades travel? 
Express your answer in km h−1.

Thinking Working

Calculate the period, T. Remember to express 
frequency in the correct units.

Alternatively, recognise that 20 revolutions in 
60 seconds means that each revolution takes 
3 seconds.

20 revolutions  

per minute = 20
60

 = 0.333 Hz

T = 1
f

= 1
0.333

= 3.0s

Substitute r and T into the appropriate 
formula for speed and solve for v. v = 2π r

T

= 2 × π ×55.0
3

=115.2 ms−1

=1.15 ×102 ms−1

Convert m s−1 into km h−1 by multiplying by 3.6. 115.2 × 3.6 = 4.2 × 102 km h−1

Worked Example: Try yourself 2.2.1

CALCULATING SPEED

A water wheel has blades 2.0 m in length that rotate at a frequency of 
10 revolutions per minute. At what speed do the tips of the blades travel? 
Express your answer in km h−1.

CENTRIPETAL ACCELERATION
Since the velocity of an object travelling in a horizontal circle is changing, it is 
accelerating even though its speed is not changing. The object is continually 
deviating inwards from a straight-line direction and so has an acceleration towards 
the centre. This acceleration is known as centripetal acceleration. (The word 
‘centripetal’ means to move towards a centre.)

In Figure 2.2.4, the velocity vector of an object travelling in a circular path is 
shown with an arrow labelled v, at a tangent to the circular path. The centripetal 
acceleration, a, is towards the centre of the circular path.

However, as Figure 2.2.5 shows, even though the object is accelerating towards 
the centre of the circle, it never gets any closer to the centre.

The centripetal acceleration, a, of an object moving in a circular path of radius 
r with a velocity v can be found from the relationship:

a = v
2

r

A substitution can be made in this equation for the speed of the object, which 
was found earlier to be:

v = 2π r
T

C a

a

v

v

v

v

a

a

N

W E
S

FIGURE 2.2.4 A body moving in a circular path 
has an acceleration towards the centre of the 
circle. This is known as centripetal acceleration.
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Thus:

a = v
2

r

= 2π r
T

⎛
⎝⎜

⎞
⎠⎟
2

× 1
r

= 4π 2r
T 2

Centripetal acceleration is always directed towards the centre of the circular 
path and is given by:

a = v
2

r
= 4π 2r
T 2

where a is the centripetal acceleration (m s−2)
 v is the speed (m s−1)
 r is the radius of the circle (m)
 T is the period of motion (s)

FORCES THAT CAUSE CIRCULAR MOTION
As with all forms of motion, an analysis of the forces that are acting is needed to 
understand why circular motion occurs. In the hammer throw described earlier 
in this section, the hammer is continually accelerating. It follows from Newton’s 
second law that there must be a net unbalanced force continuously acting on it. The 
net unbalanced force that gives the ball its acceleration towards the centre of the 
circle is known as a centripetal force.

In every case of circular motion, a real force is necessary to provide the 
centripetal force. The force acts in the same direction as the acceleration, that is, 
towards the centre of the circle. This centripetal force can be provided in a number 
of ways. For the hammer in Figure 2.2.5(a), the centripetal force is the tension force 
in the cable. Three other examples of centripetal force are shown in Figure 2.2.5.

Consider the consequences if the unbalanced force ceases to act. In the example 
of the hammer thrower, if the tension in the cable became zero—as happens when 
the thrower releases the hammer—there is no longer a force causing the hammer to 
change direction. The result is that the hammer moves in a straight line tangential 
to its circular path, as would be expected from Newton’s first law.

Centripetal force is given by:

Fnet =ma =
mv2

r
= 4π 2rm

T 2

where Fnet is the net or centripetal force on the object (N)
 m is the mass (kg)
 a is the acceleration (m s−2)
 v is the speed (m s−1)
 r is the radius of the circle (m)
 T is the period of motion (s)

FIGURE 2.2.5 (a) In a hammer throw, tension 
in the cable provides the centripetal force. 
(b) For planets and satellites, the gravitational 
attraction towards the central body provides 
the centripetal force. (c) For a car on a curved 
road, the friction between the tyres and the road 
provides the centripetal force. (d) For a person 
in a Gravitron ride, it is the normal force from 
the wall that provides the centripetal force.

Ft Fg
Ff

FN

(a) (b) (c) (d)

Ft Fg
Ff

FN

(a) (b) (c) (d)

Ft Fg
Ff

FN

(a) (b) (c) (d)

Ft Fg
Ff

FN

(a) (b) (c) (d)
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Worked example 2.2.2

CENTRIPETAL FORCES

An athlete in a hammer-throw event is swinging a metal ball of mass 7.0 kg in a 
horizontal circular path of radius 60 m. The ball is moving at 20.0 m s−1.

a Calculate the magnitude of the acceleration of the ball.

Thinking Working

As the object is moving in a circular 
path, the centripetal acceleration is 
towards the centre of the circle. To find 
the magnitude of this acceleration, 
write down the variables that 
are given.

v = 20.0 m s−1

r = 1.60 m

a = ?

Select the equation for centripetal 
acceleration that fits the values you 
have, and substitute the values.

a = v2

r

= 20.02

1.60
= 250 ms−2

Only the magnitude is required, so no 
direction is needed in the answer.

The acceleration of the ball is 
250 m s−2.

b Calculate the magnitude of the tensile force (tension) acting in the wire used 
to swing the ball.

Thinking Working

Identify the unbalanced force that 
is causing the object to move in 
a circular path. Write down the 
information that you are given.

m = 7.0 kg

a = 250 m s−2

Fnet = ?

Select the appropriate equation for 
centripetal force and substitute the 
variables you have.

Fnet = ma

= 7.0 × 250

=1750
=1.8 ×103N

State the magnitude only as no 
direction is required.

The force of tension in the wire is the 
unbalanced force that is causing the 
ball to accelerate.

Tensile force Ft = 1.8 × 103 N

Worked example: Try yourself 2.2.2

CENTRIPETAL FORCES

An athlete in a hammer-throw event is swinging a ball of mass 7.0 kg in a 
horizontal circular path of radius 20 m. The ball is moving at 25.0 m s−1.

a Calculate the magnitude of the acceleration of the ball.

b Calculate the magnitude of the tensile force (tension) acting in the wire.
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CASE STUDY

The Gravitron
When a car turns sharply to the left, the passengers in the 
car seem to sway to the right. Many mistakenly think that 
a force to the right is acting. In fact, the passengers are 
simply maintaining their motion in the original direction of 
the car, as described by Newton’s first law, that is, they are 
experiencing inertia. If the passengers are (unwisely) not 
wearing seatbelts, they may be squashed against the right-
hand door as the car turns. This will exert a large force to 
the left on them, which causes them to move to the left.

People moving rapidly in circular paths might also 
mistakenly think that there is an outward force acting 
on them. In order for the physics to be explained, it is 
necessary to use different frames of reference. For example, 
riders on the Gravitron (also known as the Vortex or Rotor), 
like those in Figure 2.2.6, will feel a force pushing them 
into the wall. This outwards force is commonly known as a 
centrifugal force. (centrifugal means ‘centre-fleeing’.) This 
force does not actually exist in their frame of reference. 
The riders think that it does because they are in a rotating 
frame of reference. From outside the Gravitron, it is evident 

that there is an inwards force (the normal force) that is 
holding them in a circular path. If the walls disintegrated 
and this normal force ceased to act, they would not fly 
outwards, but move at a tangent to their circle.

A Gravitron can rotate at 24 rpm with a radius of 7 m. 
The centripetal acceleration can be over 40 m s−2. This is 
caused by a very large centripetal force from the wall i.e. 
the normal force, FN. In the vertical direction, Fg is balanced 
by an upwards frictional force, Ff, so the riders experience 
no vertical motion even if the floor then drops away. It 
is important to remember that there is no force acting 
outwards. In fact, as you can see in Figure 2.2.7, the forces 
are unbalanced and the net force is equal in size and 
direction to the normal force towards the centre of the 
circle.

FIGURE 2.2.6 There is a large inwards force from the wall (a normal 
force) that causes these Gravitron riders to travel in a circular path.

Ff

FN

Fg

FIGURE 2.2.7 There are three forces acting on the rider in a Gravitron. 
Vertically, the forces are balanced and so no motion occurs in this 
direction. The remaining force, FN, provides the net (centripetal) force to 
the centre of the ride.

BALL ON A STRING
You may have played totem tennis. This is a game where a ball is attached to a 
pole by a string and can travel in a horizontal circle, although the string itself is not 
horizontal (Figure 2.2.8).

If the ball at the end of the string is swinging slowly, the string swings down at 
an angle closer to the pole. If the ball was swung faster, the string would become 
closer to being horizontal. In fact, it is not possible for the string to be absolutely 
horizontal, although as the speed increases, the closer to horizontal it becomes. This 
system is known as a conical pendulum.

If the angle of the conical pendulum is known, trigonometry can be used to find 
the radius of the circle and the forces involved.

str
ing

C

r

FIGURE 2.2.8 This ball is travelling in a 
horizontal circular path of radius r. The centre of 
its circular motion is at C.
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Worked example 2.2.3

OBJECT ROTATING ON THE END OF A STRING

During a game of totem tennis, a ball of mass 150 g is swinging freely in a 
horizontal circular path. The cord is 1.50 m long and at an angle of 60.0° to the 
vertical.

1.50 m60.0˚

a Calculate the radius of the ball’s circular path.

Thinking Working

The radius of the circular 
path and the pole 
form a right angle. Use 
trigonometry to find the 
radius.

r = 1.50 sin 60.0° = 1.30 m

b Draw and label the forces that are acting on the ball at the instant shown in 
the diagram.

Thinking Working

There are two forces acting: 
the tension in the cord, 
Ft, and the force due to 
gravity, Fg. These forces are 
unbalanced.

Ft

Fg

c Determine the net force that is acting on the ball at this time.

Thinking Working

First calculate the force due 
to gravity, Fg.

Fg = mg

= 0.150 × 9.8

=1.47N

The ball has an acceleration 
that is towards the centre 
of its circular path. This is 
horizontal and acts towards 
the left at this instant. The 
net force will also be acting 
in this direction. A force 
triangle and trigonometry 
can be used to determine 
the net force.

60.0˚
Ft = ?

Fg = 1.47 N

Fnet = ?

Fnet =1.47tan60.0°
= 2.55N towards the centre of the circular path
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d Calculate the size of the tensile force in the cord.

Thinking Working

Use trigonometry to find Ft. Ft =
1.47

cos60.0°
= 2.94N

Worked example: Try yourself 2.2.3

OBJECT ROTATING ON THE END OF A STRING

During a game of totem tennis, a ball of mass 200 g is swinging freely in a 
horizontal circular path. The cord is 2.00 m long and at an angle of 50.0° to the 
vertical.

2.00 m

50.0˚

a Calculate the radius of the ball’s circular path.

b Draw and label the forces that are acting on the ball at the instant shown in 
the diagram.

c Determine the net force that is acting on the ball at this time.

d Calculate the size of the tensile force in the cord.
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  2.2 Review

SUMMARY

• Frequency, f, is the number of revolutions each 
second and is measured in hertz (Hz).

• Period, T, is the time for one revolution and is 
measured in seconds.

• The relationship between T and f is:

 
f = 1

T
 and T = 1

f

• An object moving with a uniform speed in a circular 
path of radius r and with period T has an average 
speed given by:

v = 2π r
T

• The velocity of an object moving with a constant 
speed in a circular path is continuously changing. 
The velocity vector is always directed at a tangent to 
the circular path.

• An object moving in a circular path with a constant 
speed has an acceleration due to its circular 
motion. This acceleration is directed towards the 
centre of the circular path and is called centripetal 
acceleration, a, where:

a = v2

r
= 4π 2r

T 2

• Centripetal acceleration is a consequence of a 
centripetal force acting to make an object move in a 
circular path.

• A centripetal force is directed towards the centre of 
the circle and its magnitude can be calculated using 
Newton’s second law:

Fnet =
mv2

r
= 4π 2rm

T 2

• A centripetal force is always supplied by a real force 
the nature of which depends on the situation. The 
real force is commonly friction, gravitation or the 
tension in a string or cable.

OA
✓ ✓ 

KEY QUESTIONS

Knowledge and understanding
The following information relates to questions 1–5.

A car of mass 1200 kg is travelling in a roundabout in a 
circular path of radius 9.2 m. The car moves with a 
constant speed of 8.0 m s−1. The direction of the car is 
clockwise around the roundabout when viewed from 
above.

9.2 m

N

S

EW

1 Which two of the following statements correctly 
describe the motion of the car as it travels around the 
roundabout?
A It has a constant speed.
B It has a constant velocity.
C It has zero acceleration.
D It has an acceleration that is directed towards the 

centre of the roundabout.

2 When the car is in the position shown in the diagram, 
what is the:
a speed of the car
b velocity of the car
c magnitude and direction of the acceleration of the 

car?

3 Calculate the magnitude and direction of the net force 
acting on the car at the position shown.

4 When the car has travelled halfway around the 
roundabout, what is the:
a velocity of the car at this point
b direction of its acceleration at this point?

Hea
ds

ta
rt



79CHAPTER 2   |  NEWTONIAN THEORIES OF MOTION

 
  5 If the driver of the car kept speeding up, what would 

eventually happen to the car as it travelled around the 
roundabout? Explain your answer.

6 An ice skater of mass 75 kg is skating in a horizontal 
circle of radius 2.5 m at a constant speed of 1.5 m s−1.
a Determine the magnitude of the skater’s 

acceleration.
b Are the forces acting on the skater balanced or 

unbalanced? Explain your answer.
c Calculate the magnitude of the centripetal force 

acting on the skater.

7 A 1.5 kg ball is made to swing in a horizontal circle of 
radius 1.2 m at 2.5 revolutions per second.
a What is the period of rotation of the ball?
b What is the orbital speed of the ball?
c What is the magnitude of the acceleration of the 

ball?
d What is the magnitude of the net force acting on 

the ball?

8 A child of mass 30.0 kg is playing on a maypole swing 
in a playground. The rope is 2.40 m long and at an 
angle of 60.0˚ to the horizontal as she swings freely in 
a circular path. In answering the following questions, 
ignore the mass of the rope in your calculations.

A

B

C

60˚

2.4
 m

a Calculate the radius of the child’s circular path.
b Identify the forces that are acting on her as she 

swings freely.
c What is the direction of her acceleration when she 

is at the position shown in the diagram?
d Calculate the net force acting on the girl.
e What is her speed as she swings?

Analysis
9 A car with a mass of 1500 kg is travelling around a 

circular curve of radius 30 m at a constant speed of 
25 m s−1.
a Calculate the centripetal force required for it to 

round the curve.
b What provides the centripetal force?
c Why do the passengers in the car slide towards the 

outside of the car when the car rounds the curve?
d If there is any ice or oil on the road, the friction 

between the car tyres and the road is reduced. If 
the car is travelling too fast for the turn, what path 
will the car take?

Hea
ds

ta
rt



AREA OF STUDY 1   |   HOW DO PHYSICISTS EXPLAIN MOTION IN TWO DIMENSIONS? 80

2.3 Circular motion on banked tracks
The previous section considered relatively simple situations involving uniform 
circular motion in a horizontal plane. However, there are more complex situations 
involving circular motion. On many road bends, the road is not horizontal, but 
at a small angle to the horizontal. This enables vehicles to maintain their speed 
without skidding. A similar situation is at a cycling velodrome (Figure 2.3.1). The 
velodrome at the Darebin International Sports Centre in Thornbury has banked 
or inclined corners that peak at 43°. This enables cyclists to travel at much higher 
speeds than if the track were flat. This section examines the principles underlying 
banked cornering and applies Newton’s laws to problems involving circular motion 
on banked tracks.

BANKED TRACKS
Cars and bikes can travel much faster around corners when the road or track 
surface is inclined or banked at an angle to the horizontal. Banked tracks are used 
at cycling velodromes and certain motor sport events, such as NASCAR races. 
Road engineers design roads to be banked in places where there are sharp corners, 
such as exit ramps from freeways.

When cars travel in circular paths on horizontal roads, they are relying on the 
force of friction between the tyres and the road to provide the sideways force that 
keeps the car in its circular path.

Consider a car travelling clockwise around a horizontal roundabout at a constant 
speed, v (Figure 2.3.2). The car has an acceleration towards C (the centre of the 
circle) and so the net force is also sideways on the car towards C. The vertical forces 
(gravity and the normal force) are balanced (Figure 2.3.3). The only horizontal 
force is the sideways force that the road exerts on the car tyres. This is a force of 
friction, Ff . It is unbalanced and so must equal the net force, Fnet.

If the car drove over an icy patch, there would be no friction and the car would 
not be able to turn. It would skid in a straight line at a tangent to the circular path.

Creating a banked track by angling the road reduces the need for a sideways 
frictional force and allows cars to travel faster without skidding off the road and 
away from the circular path. Consider the same car travelling around a circular, 
banked road at constant speed, v (Figure 2.3.4). It is possible for the car to travel 
at a speed so that there is no need for a sideways frictional force. This is called the 
design speed and it is dependent on the angle, θ at which the road is banked. At 
this speed, the car exhibits no tendency to drift higher or lower on the road.

The car still has an acceleration towards the centre of the circle, C, and so there 
must be an unbalanced force in this direction. Due to the banking, there are now 
only two forces acting on the car: its force due to gravity, Fg, and the normal force, 
FN , from the road. As can be seen in Figure 2.3.4(b), these forces are unbalanced. 
They add together to give a net force that is horizontal and directed towards C 
(Figure 2.3.4(c)).

FIGURE 2.3.1 Australia’s Paige Greco, a 
Paralympic cyclist who won a gold medal at 
the 2020 Tokyo Paralympics in the 3000 m 
Individual Pursuit C1–3

Fnet

a

top view

C υ

FIGURE 2.3.2 A car travelling in a circular path 
on a horizontal track

Fnet

rear view

Ff

FN

Fg

C

FIGURE 2.3.3 The vertical forces are in balance. 
It is friction between the tyres and the road that 
enables the car to turn.

Fnet

Fnet

aC

C
θ

θ

a

top view

(a) (b) (c)

rear view

FN

FN

Fg

Fgυ
Fnet

FIGURE 2.3.4 (a) A car is travelling in a circular path on a banked road. (b) The acceleration and net 
force are towards the centre of the path, C. The banked road means that the normal force (FN) has an 
inwards component. This is what enables the car to turn the corner. (c) Vector addition gives the net 
force (Fnet) acting horizontally towards the centre.
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Banking angle
From Figure 2.3.4(c), it can be seen that the banking angle, θ, at the design speed 
of a road or track can be found by trigonometry:

tanθ = Fnet

Fg

where Fnet is the force acting towards the centre of the circle (N)
 Fg is the force due to gravity on the object (N).

Substituting Fnet =
mv2

r  and Fg = mg into the equation and simplifying gives the 

following equation.

tanθ = v
2

rg

∴θ = tan−1 v2

rg
⎛
⎝⎜

⎞
⎠⎟

where v is the speed of the vehicle (m s−1)
 r is the radius of the track (m)
	 θ is the banking angle (degrees)
 g  is the acceleration due to gravity (9.8 m s−2 near the surface of the 

Earth)

PHYSICSFILE

Inclined planes vs banked 
tracks
It is easy to confuse problems involving 
inclined planes with those involving 
banked tracks. Inclined-plane problems 
involve static objects overcoming the 
coefficient of static friction to slide 
down the plane. Banked-track problems 
involve an object moving in uniform 
circular motion on an inclined plane.

For banked-track problems, it is helpful 
to consider the vector components of 
the normal force, FN, when completing 
calculations. For inclined-plane 
problems, components of the force due 
to gravity, Fg, are used.

Thus if the banking angle is known, trigonometry can be used to calculate the

design speed. Rearranging tanθ = v
2

rg  gives the following equation for the design 

speed, v.

v2 = rg tanθ

v = rg tanθ

Note that the normal force on an object will be larger when it travels on a banked 
track than when it travels on a flat track. For example, the cyclist in Figure 2.3.5 
would feel a larger force acting from the road when she is on a banked track than 
when she is cycling on a flat track.

FIGURE 2.3.5 Australian cyclist Anna Meares on a banked velodrome track is cornering at speeds far 
higher than she could on a flat track. Cyclists on a velodrome will have a greater normal force from 
the track than cyclists on a flat track.
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Worked example 2.3.1

BANKED TRACKS

A curved section of track on an Olympic velodrome has a radius of 50 m and is 
banked at an angle of 42° to the horizontal. A cyclist of mass 75 kg is riding on this 
section of track at the design speed. Assume that g is 9.8 m s−1.

a Calculate the net force acting on the cyclist at this instant.

Thinking Working

Draw a force diagram and 
include all forces acting on the 
cyclist.

These forces are the force due 
to gravity and the normal force 
from the track, and these are 
unbalanced. The net force is 
horizontal and towards the 
centre of the circular track, as 
shown in diagram (a) and the 
force triangle of diagram (b).

Fnet

FNFg

Fnet

FN

Fg

42°

42°C

(a) (b)

Calculate the force due to 
gravity, Fg.

Fg = mg

= 75 × 9.8

= 735N

Use the force triangle and 
trigonometry to calculate the 
net force, Fnet.

tanθ = Fnet
Fg

tan42° = Fnet
735

Fnet = 0.90 ×735
= 662N

As force is a vector, a direction 
is needed in the answer. 

The net force is 6.6 × 102 N horizontally 
towards the centre of the circle.

b Calculate the design speed for this section of the track.

Thinking Working

List the relevant values. g = 9.8 m s−2

r = 50 m

θ = 42°
v = ?

Use the design speed formula. v = rg tanθ

= 50 × 9.8 × tan42°
= 21ms−1

Worked example: Try yourself 2.3.1

BANKED TRACKS

A curved section of track on an Olympic velodrome has radius of 40 m and is 
banked at an angle of 37° to the horizontal. A cyclist of mass 80 kg is riding on this 
section of track at the design speed. Assume that g is 9.8 m s−1.

a Calculate the net force acting on the cyclist at this instant.

b Calculate the design speed for this section of the track.
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Worked example 2.3.2

FINDING THE BANKING ANGLE

The curved portion of a highway needs to be banked to prevent cars from 
skidding off it. Assume that the banked track of the highway is designed for a 
top vehicle speed of 80 km h−1 (i.e. the maximum speed limit for this portion of 
the highway is 80 km h−1). The banked track portion of the highway has a radius 
of 500 m.

What is the value of the banking angle, θ, such that the forces acting on a car 
keep it on the highway without the need for friction? Assume g is 9.8 m s−2.

Thinking Working

Recall the formula for finding 
the banking angle. θ = tan−1 v2

rg
⎛
⎝⎜

⎞
⎠⎟

Convert the design speed from 
km h−1 to m s−1. v = 80 km h−1

3.6
= 22.2 m s−1

Calculate the angle.
θ = tan−1 v2

rg
⎛
⎝⎜

⎞
⎠⎟

= tan−1 22.22

500 × 9.8
⎛
⎝⎜

⎞
⎠⎟

= 5.7°

Worked example: Try yourself 2.3.2

FINDING THE BANKING ANGLE

The curved portion of a highway needs to be banked to prevent cars from 
skidding off it. Assume that the banked track of the highway is designed for a 
top vehicle speed of 110 km h−1. The banked track portion of the highway has a 
radius of 750 m.

What is the value of the banking angle, θ, such that the forces keep the car on 
the highway without the need for friction? Assume that g is 9.8 m s−1.

PHYSICSFILE

Wall of Death
In some amusement parks around the 
world, there is a ride known menacingly 
as the Wall of Death (see the figure 
below). It consists of a cylindrical 
enclosure with vertical walls. People 
on bicycles and motorbikes ride into 
the enclosure and around the vertical 
walls, so the angle of banking is 90°! 
The riders need to keep moving and 
are depending on friction to hold them 
up. By travelling fast, the centripetal 
force (the normal force from the wall) 
is large and this increases the size of 
the grip (i.e. friction) between the wall 
and tyres. If the rider slammed on the 
brakes and stopped, they would simply 
plummet to the ground.

For a rider to successfully conquer the Wall 
of Death, they need to travel fast and there 
must be a good grip between the tyres and 
the track. The rider is relying on friction to 
maintain their motion along the wall.
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  2.3 Review

SUMMARY

• A banked track is one where the track is inclined at 
an angle to the horizontal. This enables vehicles to 
travel at higher speeds when cornering than when 
travelling around a flat curved path.

• Banking a track eliminates the need for a sideways 
frictional force to make a turn. When the speed and 
angle are such that there is no sideways frictional 
force, the speed is known as the design speed.

• The forces acting on a vehicle travelling at the 
design speed on a banked track are gravity and 
the normal force from the track. These forces are 
unbalanced and add to give a net force directed 
towards the centre of the circular motion.

• At the design speed, the banking angle of the track 
is given by:

θ = tan−1 v2

rg
⎛
⎝⎜

⎞
⎠⎟

• For a given banking angle and curve radius, the 
design speed is given by: 

v = rg tanθ

OA
✓ ✓ 

KEY QUESTIONS

Knowledge and understanding
1 A cyclist is riding along a circular section of a 

velodrome where the radius is 30 m and the track is 
inclined at 30° to the horizontal. The cyclist is riding 
at the design speed and maintains a constant speed. 
Describe the direction of the acceleration on the 
cyclist.

2 Copy the following diagram and then draw on it the 
normal force, the force due to gravity and the net 
force acting on the bicycle. Label each force.

42˚

C

3 The net force acting on an 80 kg bike racing around 
a banked track is 780 N. What is the banked angle of 
the track, given that the bike is racing at the design 
speed?

4 A cycling velodrome has a turn that is banked at 25° 
to the horizontal. The radius of the track at this point 
is 35 m.
a Determine the speed (in km h−1) at which a cyclist 

of mass 75 kg would experience no sideways force 
as they ride on this section of the track.

b Calculate the size of the normal force acting on the 
cyclist.

c How would this compare with the normal force if 
they were riding on a flat track?

5 A car-racing track is banked so that when the cars 
corner at 55 m s−1, they experience no sideways 
frictional forces. The track is circular with a radius of 
275 m. Calculate the angle to the horizontal at which 
the track is banked.

6 A curved portion of a highway with a speed limit of 
90 km h−1 needs to be banked to prevent cars from 
skidding off it. The curved portion has a radius of 
450 m. What is the value of the banking angle that will 
keep a car travelling at the speed limit on that portion 
of the highway without the need of friction?

Analysis
7 An architect is designing a velodrome and the original 

plans have semi-circular sections of radius 15 m and 
a banking angle of 30°. The architect is asked to make 
changes to the plans that will increase the design 
speed for the velodrome. What two design elements 
could the architect change in order to meet this 
requirement?
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2.4 Circular motion in a vertical 
plane
Just as a body moving with constant speed in a horizontal circular path has an 
acceleration that is directed towards the centre of the circle, so does a body moving 
in a vertical circular path.

If you have been on a rollercoaster ride you will have travelled over humps and 
down dips at high speeds and, at times, in circular arcs. Some rides even have 360° 
circular tracks that are entirely vertical (Figure  2.4.1). During these rides, your 
body may experience forces that you find unpleasant.

When you travel on a rollercoaster, you can experience quite strong forces 
pushing you down into the seat as you fly through the dips. Then, as you travel 
over the humps, you tend to lift off your seat. These forces will be discussed in 
this section. As in the previous sections, Newton’s laws are used to solve problems 
involving this type of circular motion.

FIGURE 2.4.1 This rollercoaster has a circular path in a vertical plane.

MOVING IN VERTICAL CIRCLES
A body moving with constant speed in a horizontal circular path has an acceleration 
that is directed towards the centre of the circle. The same applies for vertical 
circular paths. However, circular motion in a vertical plane in real life is often more 
complex, as it does not usually involve constant speeds.

An example is illustrated in Figure  2.4.2(a). The speed of the skateboarder 
practising in a half-pipe will increase on the way down as gravitational potential 
energy is converted into kinetic energy. This means that the skater will experience 
linear acceleration, al , as well as centripetal acceleration, ac . The resultant acceleration 
is not directed towards the centre of the circular path.

At the bottom of the half-pipe, the skateboarder will be neither slowing down nor 
speeding up, so the acceleration is entirely centripetal at this point (Figure 2.4.2(b)). 
The same applies at the very top of a circular path. For this reason, motion at these 
points is easier to analyse.

C

C

ac

ac

al

anet

(a)

(b)

FIGURE 2.4.2 (a) When coming down the 
sides of a half-pipe, the skateboarder speeds 
up, and so has both a linear and a centripetal 
acceleration. The net acceleration, anet, is not 
towards the centre, C. (b) At the lowest point, 
the velocity of the skateboarder is momentarily 
constant, so there is no linear acceleration. 
The acceleration is supplied completely by the 
centripetal acceleration, ac, which is acting 
towards C.
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Fg = 490 N

g = 9.8 m s–2 4.0 m s–1

m = 50 kg FN = 490 N

Fnet = 0

FIGURE 2.4.3 The vertical forces are in balance 
in this situation, i.e. FN = Fg.

8.0 m s–1

2.5 m FN = ?

C

Fg

g = 9.8 m s–2 Fnet = 1300 N

FIGURE 2.4.4 The person has a centripetal 
acceleration that is directed upwards towards 
the centre of the circle, and so the net force is 
also upwards. In this case, the magnitude of the 
normal force, FN, is greater than the force due to 
gravity, Fg, and produces a situation where the 
rider feels heavier than usual.

2.0 m s–1

2.5 m

FN = ?

C

Fg = 490 N
g = 9.8 m s–2

Fnet = 80 N

FIGURE 2.4.5 The centripetal acceleration is 
downwards towards the centre of the circle, 
and so the net force is also in that direction. At 
this point, the magnitude of the normal force, 
FN, is less than the force on the person due to 
gravity, Fg.

Uniform horizontal motion
Theme park rides make you appreciate that the forces you experience throughout 
a ride can vary greatly. First, consider the case of a person in a rollercoaster cart, 
like that shown in Figure 2.4.3, travelling horizontally at 4.0 m s−1. If the person’s 
mass is 50 kg and the gravitational field strength is 9.8 m s−2, the forces acting on the 
person can be easily calculated. These forces are the gravitational force, Fg, and the 
normal force, FN, from the seat.

The person is moving in a straight line with a constant speed, so there are no 
unbalanced forces acting. The force due to gravity balances the normal force from 
the seat. The normal force is therefore 490 N up, which is what usually acts upwards 
on the person when moving horizontally. Hence they would feel the same as their 
usual force due to gravity.

Circular motion: travelling through dips
Now consider the forces that act on the person as the cart reaches the bottom of 
a circular dip. Suppose that the dip has a radius of 2.5 m and the cart is moving at 
8.0 m s−1 (Figure 2.4.4).

The person will have a centripetal acceleration due to the circular path. This 
centripetal acceleration is directed towards the centre, C, of the circular path—in 
this case, vertically upwards. The person’s centripetal acceleration, a, is:

a = v
2

r

= 8.02

2.5
= 26ms−2  upwards towards C

The net centripetal force acting on the person is given by:
Fnet = ma

= 50× 26

=1300 N upwards

The normal force, FN , and the force due to gravity, Fg , are no longer in balance. 
They add together to give an upwards force of 1300 N. This indicates that the normal 
force must be greater than the force due to gravity by 1300 N. In other words, the 
normal force is 490 N + 1300 N = 1790 N up. This is more than three times greater 
than the normal force of 490 N that usually acts on a person of mass 50 kg. That is 
the reason why, when in a ride, you feel the seat pushing up against you much more 
strongly at this point and you feel much heavier than usual.

Circular motion: travelling over humps
Now consider the situation as the cart moves over the top of a hump of radius 2.5 m 
with a lower speed of 2.0 m s−1 (Figure 2.4.5).

The person now has a centripetal acceleration that is directed vertically 
downwards towards the centre of the circle, C. Therefore the net force acting at this 
point is directed vertically downwards. The centripetal acceleration is:

a = v
2

r

= 2.02

2.5
=1.6 ms−2  downwards towards C

The net centripetal force is:
Fnet = ma

= 50×1.6

= 80N downwards
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As in the dip, the force due to gravity and the normal force are not in balance. 
They add to give a net force of 80 N down. The force due to gravity, Fg , must 
therefore be 80 N greater than the normal force, FN . This tells us that the normal 
force is 490 N  −	80 N = 410 N up. This explains why you feel lighter when travelling 
over a hump.

Circular motion: travelling through loops
You might have been on a rollercoaster like the one in Figure 2.4.6 where you were 
upside down at times during the ride. The speed of these rides and the radius of 
their circular path is what prevents riders from falling out. In theory, the safety 
harness worn by a rider is not needed to hold them in their seats.

FIGURE 2.4.6 The thrill seekers on this rollercoaster ride don’t fall out when upside down because 
the centripetal acceleration of their cart is greater than 9.8 m s−2 down.

C

15 m

v = ?

g = 9.8 m s–2

Fnet = 490 N

Fg = 490 N

FN = 0

mass = 50 kg

FIGURE 2.4.7 A rollercoaster cart travelling upside down 
through a loop. At the critical point where the cart just stays 
in contact with the track, the normal force can be considered 
to be zero.

The reason people don’t fall out of the rollercoaster is that their centripetal 
acceleration is greater than the acceleration due to gravity (9.8 m s−2). To illustrate 
this, try the following activity. Extend a hand palm up, place an eraser on your palm 
then turn your hand over and move it rapidly towards the floor. You 
should find that it is possible to keep the eraser in contact with your 
hand as you move your hand down. The eraser is under your hand 
but it is not falling out of your hand. Your hand must be, for a short 
time, moving downwards with an acceleration in excess of 9.8 m s−2 
and continually exerting a normal force on the eraser. If your hand 
had an acceleration less than 9.8 m s−2, the eraser would fall away 
from your hand to the floor.

A similar principle holds with rollercoaster rides. The people on 
the ride don’t fall out at the top because the motion of the rollercoaster 
gives them a centripetal acceleration that is greater than 9.8 m s−2 
down. The engineers who designed the ride would have ensured that 
the rollercoaster can move with sufficient speed and in a circle of an 
appropriate radius so that this happens.

To explore this further, consider a rollercoaster ride of radius 
15 m in a vertical circle (Figure 2.4.7).
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It is possible to calculate the speed that would ensure that a rider does not fall 
out. At the critical speed (i.e. the minimum speed), the normal force, FN, on the 
person will be zero. In other words, the seat will exert no force on them at this 
speed. The critical speed is independent of the mass of the person. Assuming that 
g = 9.8 m s–2, the centripetal force, Fnet, is:

Fnet = Fg + FN but FN = 0, so:
Fnet = Fg

Therefore:
mv2

r
= mg

v2 = mgr
m

= gr

v = gr

= 9.8×15
=12ms−1

This speed is approximately equal to 43 km h–1 and is the minimum speed 
needed to prevent riders—whatever their mass—from falling out of their cart in 
a loop of that particular radius. In practice, the rollercoaster would move with a 
speed much greater than this to ensure that there was a significant force between 
the riders and their seats, rather than zero normal force as calculated for the critical 
speed. Corkscrew rollercoasters can travel at up to 110 km h–1 and the riders can 
experience accelerations of up to 50 m s–2 (or 5 g). So safety harnesses are really 
only needed when the speed is below the critical value. Their primary function is to 
prevent people from moving around while on the ride.

How the normal force varies during the ride
It is interesting to compare the normal force that acts on the 50 kg rollercoaster 
rider in the three situations explored, that is, when they are travelling horizontally 
with uniform motion, when they are at the bottom of a dip and when they are at 
the top of a loop.
• The normal force when travelling horizontally is 490 N upwards.
• At the bottom of a dip, the normal force is 1790 N upwards. In other words, in 

the dip the seat pushes into the rider with a greater force than usual. As the rider 
experiences a normal force of 1790 N, they feel much heavier than normal. If 
the rider had been sitting on weighing scales at this time, the scales would have 
shown a higher-than-usual reading.

• At the top of a hump, the normal force is 410 N upwards. In other words, over 
the hump the seat pushes into the rider with a smaller force than usual. As 
the rider experiences a normal force of 410 N, this gives them the sensation of 
feeling lighter.
The force on the rider due to gravity has not changed throughout the ride: Fg 

remains at 490 N. It is the normal force acting on them that varies. It is the normal 
force that makes the rider feel heavier and lighter as they travel through the dips 
and humps respectively.

PHYSICSFILE

Fighter pilots
A fighter pilot in a vertical loop 
manoeuvre can safely experience 
centripetal accelerations of up to 
around 9 g, or 88 m s−2. In a loop where 
the g-force is greater than this, the 
pilot may pass out. The centripetal 
acceleration of the plane will push her 
into her seat and make the blood flow 
away from her head. The resulting 
reduction of blood in the brain 
may cause her to experience visual 
disturbance (a ‘grey out’) or even lose 
consciousness (a ‘black out’). This type 
of force is a called a positive g-force. 
Fighter pilots wear g-suits which 
pressurise the legs and limit the blood 
flowing to them. This helps them to 
maintain consciousness.

On the other hand, if the pilot’s 
head is on the outside of the loop, 
the centripetal acceleration will pull 
the pilot onto their harness and the 
additional blood flow to the head can 
make the whites of the eyes turn red. 
The excess blood flow in the head may 
cause ‘red out’. This type of force is 
called a negative g-force.
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Worked example 2.4.1

VERTICAL CIRCULAR MOTION

A student arranges a toy car track with a vertical loop of radius 20.0 cm.

A toy car of mass 150 g is released from rest at a height of 1.00 m (point X). The 
car rolls down the track and travels inside the loop. Assume that g is 9.8 m s−2 and 
ignore friction.

g = 9.8 m s–2
C

20.0 cm

mass = 150 g

1.00 m

X

Z

Y

a Calculate the speed of the car as it reaches point Y at the bottom of the loop.

Thinking Working

Note all the variables given to 
you in the question.

At X:

m = 150 g = 0.150 kg

Δh = 1.00 m

v = 0

g = 9.8 m s−2

Approach the problem by 
considering that energy is 
conserved during the car’s 
motion. Calculate the total 
mechanical energy first. Note 
that the initial speed is zero, so 
Ek at X is zero.

The total mechanical energy, Em, at X is:

Em = Ek + Eg

= 1
2
mv2 +mgΔh

= 0 + (0.150 × 9.8 ×1.00)
=1.47J

Use conservation of energy 
(Em = Ek + Eg) to determine the 
velocity at point Y.

As the car rolls down the track, 
it loses its gravitational potential 
energy and gains kinetic energy. 
At the bottom of the loop (Y), the 
car has zero potential energy. 

At Y:

Em = 1.47 J

Δh = 0

Eg = 0

Em = Ek + Eg

Em = 1
2
mv2 +mgΔh

1.47 = 1
2
× 0.150v2 + 0

v2 = 1.47
0.0750

v = 19.6

= 4.4ms−1
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b Calculate the normal force from the track at point Y.

Thinking Working

To solve for FN, start by 
working out the net, or 
centripetal, force. At Y, the car 
has a centripetal acceleration 
towards C (i.e., upwards), so 
the net centripetal force must 
also be vertically upwards at 
this point.

Fnet =
mv2

r

= 0.150 × 4.432

0.200
=14.7N up

Calculate the force due to 
gravity, Fg, and add it to a 
force diagram.

Fg = mg

= 0.150 × 9.8

=1.47N down

At point Y
FN = ?

Fg = 1.47 N

Fnet = 14.7 N

Work out the normal force 
using vectors. Note up as 
positive and down as negative 
in your calculations.

The forces acting are 
unbalanced, as the car has 
a centripetal acceleration 
upwards (towards C). The 
upwards (normal) force must 
be larger than the downwards 
force.

Fnet = Fg + FN

+14.7 = −1.47 + FN

FN = +14.7 +1.47

=16N up

Note that the force the track exerts on the car 
is much greater (by about ten times) than the 
force due to gravity. If the car were travelling 
horizontally on a flat surface, the normal force 
would be just 1.47 N up. 

c What is the speed of the car as it reaches point Z?

Thinking Working

Calculate the velocity from the 
values you have, using  
Em = Ek + Eg.

At Z:

m = 0.150 kg

∆h = 2 × 0.200 = 0.400 m

Mechanical energy is conserved, so Em = 1.47 J 
(from part a).

At Z:
Em = Ek + Eg

= 1
2
mv2 +mgΔh

1.47 = 0.5 × 0.150 × v2( ) + 0.150 × 9.8 × 0.400( )
1.47 = 0.075 × v2 + 0.588

v2 =11.76
v = 3.4ms−1
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d What is the normal force acting on the car at point Z?

Thinking Working

To find FN, start by working out 
the net, or centripetal, force.

At Z, the car has a centripetal 
acceleration towards C (i.e., 
downwards), so the net 
centripetal force must also be 
vertically downwards at this point.

Fnet =
mv2

r

= 0.150 × 3.432

0.200
= 8.82N down

Work out the normal force using 
vectors. Note up as positive 
and down as negative in your 
calculations.

FN = ?

Fg = 1.47 N

Fnet = 8.82 N

Z

Fnet = Fg + FN

−8.82 = −1.47 + FN

FN = −8.82 +1.47

= −7.35

= 7.4N down

Note that there is still strong contact 
between the car and the track—as given by 
the normal force—but that it is only about 
half the size compared to when the car was 
at the bottom of the track.

If the car had progressively lower speeds, 
the normal force at Z would decrease and 
eventually drop to zero. At this point, the car 
would lose contact with the track, fall off the 
track and its acceleration would be equal to g.

Worked example: Try yourself 2.4.1

VERTICAL CIRCULAR MOTION

A student arranges a toy car track with a vertical loop of radius 25.0 cm, as shown.

A toy car of mass 150 g is released from rest at a height of 1.20 m (point X). The 
car rolls down the track and travels around the loop. In answering the following 
questions, assume that g is 9.8 m s–2 and ignore friction.

g = 9.8 m s–2 C
25.0 cm

mass = 150 g

1.20 m

X

Z

Y

a Calculate the speed of the car as it reaches point Y the bottom of the loop.

b Calculate the normal force from the track at point Y.

c What is the speed of the car as it reaches point Z?

d What is the normal force acting on the car at point Z?
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  2.4 Review

SUMMARY

• The gravitational force, Fg, and normal force, FN, 
must be considered when analysing the motion of 
an object moving in a vertical circle.

• If the normal force is greater than the gravitational 
force (FN > Fg) the passenger or rider will feel heavier 
than they really are.

• If the normal force is less than the gravitational force 
(FN < Fg) the passenger or rider will feel lighter than 
they really are.

• In vertical circular motion, the gravitational force 
always acts vertically downwards regardless of the 
position of the rider or passenger around the circle, 
the net force always acts towards the centre of the 
circle, and the normal force always acts between the 
seat and the passenger or rider.

• The normal force and the gravitational force are 
added together as vectors in a force diagram to give 
the resultant as the net force.

• At the point where a moving object falls from its 
circular path, the normal force is zero. The object 
will be moving with a centripetal acceleration equal 
to that due to gravity (9.8 m s−2 down).

• Problems relating to motion in vertical circles can 
often be solved by noting that energy is conserved 
at all points in the motion:

Em = Ek + Eg = 1
2
mv2 +mgΔh

OA
✓ ✓ 

KEY QUESTIONS

Knowledge and understanding
In answering the following questions, assume that 
g = 9.8 m s−2 and ignore the effects of air resistance.

1 A yo-yo is swung with a constant speed in a vertical 
circle.
a Describe the magnitude of the acceleration of the 

yo-yo along its path.
b At which point in the circular path is there the most 

tension in the string?
c At which point in the circular path is there the least 

tension in the string?
d At which point is the string most likely to break?
e If the yo-yo has a mass of 100 g and the radius of 

the circle is 1.25 m, find the minimum speed that 
the yo-yo must have at the top of the circle so that 
the string does not slacken.

2 A car of mass 800 kg encounters a speed hump 
of radius 10 m. The car drives over the hump at a 
constant speed of 14.4 km h−1.
a Name all the vertical forces acting on the car when 

it is at the top of the hump.
b Calculate the resultant force acting on the car when 

it is at the top of the hump.
c After travelling over the hump, the driver remarked 

to a passenger that she felt lighter as the car 
moved over the top of the hump. Is this possible? 
Explain your answer.

d What is the maximum speed (in km h−1) that this 
car can have at the top of the hump and still have 
its wheels in contact with the road?

3 A student is designing an amusement park ride that 
includes a loop-the-loop, in which a cart descends a 
steep incline at point X, enters a circular loop at point 
Y, and makes one complete revolution of the loop. The 
cart has a mass of 700 kg, and it carries passengers at 
a speed of 1.75 m s−1 before it begins its descent from 
point X, which is 70 m higher than the bottom of the 
loop.

Z

Y

X

1.75 m s–1

700 kg

70.0 m

17 m

a Calculate the speed of the cart at point Y.
b What is the speed of the cart at point Z?
c Calculate the normal force acting on the cart at 

point Z.
d What is the minimum speed that the cart can have 

at point Z and still stay in contact with the track?
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  4 A stunt pilot appearing at an air show decides to 

perform a vertical loop so that she is upside down at 
the top of the loop. During the stunt she maintains a 
constant speed of 35.0 m s−1 and the loop has a radius 
of 100 m.
Calculate the normal force acting on the 80.0 kg pilot 
when she is at the top of the loop.

5 A skateboarder of mass 72 kg is practising on a half-
pipe of radius 3.0 m. At the lowest point of the half-
pipe, the speed of the skater is 7.0 m s−1.
a What is the acceleration of the skater at this point? 

Specify both the magnitude and direction.
b Calculate the size of the normal force acting on the 

skater at this point.

Analysis
6 The maximum value of acceleration that the human body can safely tolerate for a short time is nine times that due 

to gravity. Calculate the maximum speed with which a pilot could safely pull out of a circular dive of radius 400 m.

7 A student rolls a toy car of mass 50 g along a smooth track in the shape of a loop-the-loop. They try to give the car a 
launch speed at point A so that the car just maintains contact with the track as it passes through point B.

A

B

40 cm

a Determine the acceleration of the toy car as it passes point B.
b How fast is the toy car travelling at point B?

8 A car of mass 1500 kg slows to travel over an old stone bridge of radius 10 m. The car’s speed at the top of the 
bridge is 8.0 m s−1.

FN
 

8.0 m s–1

C

Fg

g = 9.8 m s–2

10 m

a Calculate the magnitude and direction of the resultant force acting on the car when it is at the top of the bridge.
b Calculate the magnitude and direction of the normal force acting on the car when it is at the top of the bridge.
c What is the maximum speed that the car can have at the top of the bridge and still have its wheels in contact with 

the road?
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2.5 Projectiles launched horizontally
A projectile is any object that is thrown or projected into the air and is moving 
freely, that is, it has no power source (such as a rocket engine or propeller) driving 
it. A netball as it is passed, a cricket ball that is hit for six and an aerial skier flying 
through the air are examples of projectiles. People have long argued about the 
path that projectiles follow, with some thinking that they were circular or had 
straight sections. It is now known that if projectiles are not launched vertically, and 
if air resistance is ignored, they move in smooth parabolic paths (Figure 2.5.1). 
This section considers projectiles that are launched horizontally and shows how 
Newton’s laws can be used to solve problems involving projectile motion.

PROJECTILE MOTION
It is a very common misconception that when a projectile travels forwards through 
the air, it has a forwards force acting on it. This is incorrect. There may have been 
some forwards force acting as the projectile was launched, but once the projectile is 
released, this forwards force is no longer acting.

In fact, if air resistance is ignored, the only force acting on a projectile during 
its flight is the force due to gravity, Fg. This force is constant and always directed 
vertically downwards. This causes the projectile to continually deviate from a 
straight-line path and follow a parabolic path (Figure 2.5.2).

Projectile motion is quite complex compared to straight-line motion. It must be 
analysed by considering the different components—horizontal and vertical—of the 
actual motion. The vertical and horizontal components are independent of each 
other and must be treated separately.

FIGURE 2.5.1 A multi-flash photograph of a golf 
ball that has been bounced on a hard surface. 
The ball moves in a series of parabolic paths.

FIGURE 2.5.2 The motorcycle and rider travel in a parabolic path as they fly through the air.
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Given that the only force acting on a projectile is the force due to gravity, Fg, it 
follows that the projectile must have a vertical acceleration of 9.8 m s−2 downwards 
throughout its motion.

PROJECTILES LAUNCHED HORIZONTALLY
Projectiles can be launched at any angle. The launch velocity needs to be resolved into 
vertical and horizontal components and trigonometry used to solve most problems 
involving projectile motion. For projectiles launched horizontally, calculating the 
vector components of the launch velocity is straightforward: the initial vertical 
velocity is zero (although it increases during the flight) and the horizontal velocity 
is constant (equal to its launch velocity). This can be verified using trigonometric 
ratios and a launch angle of 0°.

Tips for solving projectile motion problems
1 Construct a diagram showing the projectile’s motion. Write down the information 

supplied for the horizontal and vertical components.
2 In the horizontal direction, the velocity, v, is constant, and the only formula 

needed to calculate it is vav =
s
t
.

3 In the vertical direction, the projectile is moving with a constant acceleration 
(9.8 m s−2 downwards), so the equations of motion for uniform acceleration can 
be used. These include:

v = u + at

s = ut + 1
2
at2

v2 = u2 + 2as
4 In the vertical direction, it is important to clearly specify whether up or down 

is the positive or negative direction. Either choice will work just as effectively. 
However, the same convention needs to be used consistently throughout each 
problem.

5 If a projectile is launched horizontally, its horizontal velocity throughout the 
flight is the same as its initial velocity.

6 Pythagoras’s theorem can be used to determine the actual speed of the projectile 
at any point.

7 If the velocity of the projectile is required, it is necessary to provide a direction 
with respect to the horizontal plane as well as its speed.

 In the vertical direction, a projectile 
accelerates due to the force of 
gravity, that is, at a rate of 9.8 m s−2 
downwards.

 In the horizontal direction, a projectile 
has a uniform velocity. This is because 
there are no forces acting on it in this 
direction (if air resistance is ignored). 
Thus the horizontal acceleration is 
zero.

PHYSICSFILE

Cartoon physics
It is easy to get the wrong idea about projectile motion from 
watching cartoon characters running or driving off cliffs. 
In many cartoons, the character leaves the cliff and travels 
horizontally outwards, stopping in mid-air (see figure at right). 
Once they realise where they are, they immediately fall vertically 
downwards. Clearly, this is not what happens in reality! The 
character should start falling in a smooth parabolic arc as soon as 
they leave the cliff-top.

Many misconceptions can arise from what is 
shown in cartoons. In real life, this car would 
start falling as soon as it leaves the cliff top and 
travel in a parabolic arc.
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Worked example 2.5.1

PROJECTILE LAUNCHED HORIZONTALLY

A golf ball of mass 150 g is hit horizontally with a speed of 25.0 m s−1 from the top of a cliff 40.0 m high. In answering the 
following questions, assume that g = 9.8 m s−2 and ignore air resistance.

–

+
40.0 m

25.0 m s–1 g = 9.8 m s–2

a Calculate the time the ball takes to land.

Thinking Working

Let the downwards direction be positive. Write down the information relevant to 
the vertical component of the motion. Note that the instant the ball is hit, it is 
travelling only horizontally, so its initial vertical velocity is zero.

Down is positive.

Vertically:

u = 0 m s−1

s = 40.0 m

a = 9.8 m s−2

t = ?

In the vertical direction, the ball has constant acceleration, so use an equation 
for uniform acceleration. Select the equation that best fits the information you 
have.

s = ut + 1
2
at2

Substitute values, rearrange the equation and solve for t.
40.0 = 0 + 1

2
× 9.8t2

t = 40.0
4.90

= 2.86

= 2.9s

b Calculate the distance the ball travels from the base of the cliff, i.e. the range of the ball.

Thinking Working

Write down the information relevant to the horizontal component of the motion. 
As the ball is hit horizontally, the initial speed gives the horizontal component of 
the velocity throughout the flight.

Horizontally:

u = 25.0 m s−1

t = 2.86 s from part a

s = ?

Select the equation that best fits the information you have. As the horizontal speed is constant 

(i.e. u = v), you can use vav =
s
t

.

Substitute values, rearrange the equation and solve for s. 25.0 = s
2.86

s = 25.0 × 2.86

= 72m

Note that the mass of the ball does  
not affect its motion, as is the case  
with all objects in projectile motion or  
in free fall.
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c Calculate the velocity of the ball as it lands.

Thinking Working

Find the horizontal and vertical components of the ball’s speed as 
it lands. Write down the information relevant to both the vertical 
and horizontal components.

Horizontally:

u = v = 25.0 m s−1

Vertically, with downwards as positive:

u = 0

a = 9.8 m s−2

s = 40.0 m

t = 2.86 s

v = ?

To find the final vertical speed, use the equation for uniform 
acceleration that best fits the information you have.

v = u + at

Substitute values and solve for the variable you are looking for, in 
this case v.

Vertically:

v = 0 + 9.8 × 2.86

	 	= 28 m s−1 down

Add the components as vectors. 25.0 m s–1

28.0 m s–1v

θ

Use Pythagoras’s theorem to work out the actual speed, v, of the 
ball.

v = vh2 + vv
2

= 25.02 + 28.02

= 1409

= 38ms−1

Use trigonometry to find the angle, θ.
θ = tan−1 28.0

25.0
⎛
⎝⎜

⎞
⎠⎟

= 48.2°

Specify the velocity with a magnitude and a direction relative to 
the horizontal. Express the answer to 2 significant figures.

The final velocity of the ball is 38 m s−1 at 48° below 
the horizontal.

Worked example: Try yourself 2.5.1

PROJECTILE LAUNCHED HORIZONTALLY

A golf ball of mass 100 g is hit horizontally with a speed of 20.0 m s−1 from the top of a 30.0 m high cliff. In answering the 
following questions, assume that g = 9.8 m s−2 and ignore air resistance.

–

+

30.0 m

20.0 m s–1 g = 9.8 m s–2

a Calculate the time the ball takes to land.

b Calculate the distance the ball travels from the base of the cliff, i.e. the range of the ball.

c Calculate the velocity of the ball as it lands.
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THE EFFECTS OF AIR RESISTANCE
The interaction between a projectile and the air can have a significant effect on its 
motion particularly if the projectile has a large surface area and a relatively low mass. 
If you try throwing an inflated party balloon, it will not travel very far compared to 
throwing a marble at the same speed.

The size of the air resistance (i.e. the drag force) that acts on an object as it 
moves depends on s factors as:
• the speed of the object: the faster an object moves, the greater the drag force 

becomes.
• the cross-sectional area of the object in its direction of motion: a greater area 

means greater drag
• the aerodynamic shape of the object: a more streamlined shape experiences less 

drag
• the density of the air: higher air density means greater drag.

When a pilot drops a supply parcel from a plane, the drag force from the air acts 
in the opposite direction to the parcel’s velocity. If the parcel were dropped on the 
Moon, where there is no air and hence no air resistance, the parcel would continue 
its horizontal motion and would remain directly below the plane as it fell.

Figure 2.5.3 shows a supply parcel being dropped from a plane moving at a 
constant velocity. If air resistance is ignored, the parcel falls in the parabolic arc 
shown by the darker blue curved line in diagram (a). It would continue moving 
horizontally at the same rate as the plane, that is, as the parcel falls it would stay 
directly beneath the plane until it hits the ground. The effect of air resistance is 
shown by the light-blue curved path. Air resistance (i.e. drag) is a retarding force 
and it acts in a direction that is opposite to the motion of the projectile. Air resistance 
makes the parcel fall more slowly and over a shorter path. If air resistance is taken 
into account, there are now two forces acting, as shown in diagram (b): the force 
due to gravity, Fg , and air resistance, Fa. Therefore the resultant force, Fnet, that acts 
on the projectile is not vertically down and nor is its acceleration.

without air resistance

with air resistance

Fa
Fa

Fa

Fg
Fg

Fg

Fg

Fg

Fg

Fg
Fg

Fg

Fg

Fg

Fa

Fa

(a)

Fa

Fg

Fnet

(b)

FIGURE 2.5.3 (a) The paths of a supply parcel dropped from a plane with and without air resistance. 
(b) When air resistance is acting, the net force on the parcel is not vertically down.

PHYSICSFILE

Aerodynamic design
In the track-and-field event of javelin, 
the aerodynamic shape of the javelin 
once used proved to be too successful. 
The javelin had been progressively 
streamlined to reduce the drag force 
so that the athletes could throw it 
further. This was not a problem until 
the 1980s—the javelin could now be 
thrown so far that runners competing in 
nearby track events were endangered. 
The design of the javelin was changed 
again. It was made more snub-nosed to 
increase drag and reduce the distance 
it could be thrown (see figure below). In 
1983, the world record was 104.8 m. 
In 1986, with the modified design, the 
world record dropped to 85.7 m.

Australian Kelsey-Lee Barber winning a 
bronze medal in the women’s javelin final at 
the 2020 Tokyo Olympics. Note the javelin’s 
snub-nosed end.
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  2.5 Review

SUMMARY

• If air resistance is ignored, the only force acting on a 
projectile is the force due to gravity, Fg. This results 
in the projectile having a vertical acceleration of 
9.8 m s−2 downwards during its flight.

• Projectiles move in parabolic paths that can be 
analysed by considering the horizontal and vertical 
components of their motion.

• The following equations of motion for uniform 
acceleration can be used to determine the vertical 
component of the motion:

 

v = u + at

s = ut + 1
2
at2

v2 = u2 + 2as

• The horizontal velocity of a projectile remains 
constant throughout its flight if air resistance is 
ignored. Therefore the following equation for average 
velocity can be used for the horizontal component 
of its motion:

vav =
s
t

• Pythagoras’s theorem can be used with the vertical 
and horizontal components of velocity to work out 
the speed, v, of the projectile.

• If the velocity of the projectile is required, 
trigonometry can be used to find the angle to the 
horizontal at which the projectile is travelling.

OA
✓ ✓ 

KEY QUESTIONS

Knowledge and understanding
For the following questions, assume that the acceleration 
due to gravity is 9.8 m s−2 and ignore the effects of air 
resistance unless otherwise stated.

1 A skateboard travelling at 5.5 m s−1 rolls off a 
horizontal bench that is 1.7 m high.
a How long does the board take to hit the ground?
b How far does the board land from the base of the 

bench?
c What is the magnitude and direction of the board’s 

acceleration just before it lands?

2 Two identical tennis balls, X and Y, are hit horizontally 
from a point 2.5 m above the ground with different 
initial speeds: ball X has an initial speed of 7.5 m s−1 
and ball Y has an initial speed of 12 m s−1.
a Calculate the time it takes for ball X to strike the 

ground.
b Calculate the time it takes for ball Y to strike the 

ground.
c How much further than ball X does ball Y travel in 

the horizontal direction before bouncing?

3 An archer stands on top of a platform that is 45 m 
high and fires an arrow horizontally at 70 m s−1.
a What is the speed of the arrow as it reaches the 

ground?
b At what angle relative to the horizontal is the arrow 

travelling as it reaches the ground?

4 A bowling ball of mass 9.5 kg travelling at 6.5 m s−1 
rolls off a horizontal table 1.0 m high.
a Calculate the ball’s horizontal velocity just as it 

strikes the floor.
b What is the vertical velocity of the ball as it strikes 

the floor?
c Calculate the velocity of the ball as it strikes the 

floor.
d What time interval has elapsed between the ball 

leaving the table and striking the floor?
e Calculate the horizontal distance travelled by the 

ball as it falls.
f Draw a diagram showing the forces acting on the 

ball as it falls towards the floor.

Analysis
5 A golf ball of mass 175 g is hit horizontally from the 

top of a cliff 75.0 m high. The golf ball lands 100 m 
from the base of the cliff. Calculate the horizontal 
speed at which the golf ball left the cliff top.
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2.6 Projectiles launched obliquely
The previous section looked at projectiles that were launched horizontally. Another 
common situation is when projectiles are launched obliquely (i.e. at an angle) by 
being thrown forwards and upwards at the same time. An example of an oblique 
launch is shooting for a goal in basketball (Figure 2.6.1). Once the ball is released, 
the only forces acting on it are gravity (pulling it down to Earth) and air resistance 
(which slightly retards the ball’s motion).

FIGURE 2.6.1 A basketball thrown up towards the ring travels in a smooth parabolic path.

PROJECTILES LAUNCHED AT AN ANGLE
If drag forces are ignored, the only force acting on a projectile that is launched at an 
angle to the horizontal is gravity, Fg. This is the same as with projectiles launched 
horizontally.

Gravity acts vertically downwards and so it has no effect on the projectile’s 
horizontal motion. The vertical and horizontal components of the motion are 
independent of each other and once again must be treated separately.

In the vertical direction, a projectile accelerates due to the force of gravity, that 
is, at a rate of 9.8 m s–2 downwards. Thus the vertical component of the projectile’s 
velocity decreases as the projectile rises. It is momentarily zero at the top of the 
flight and then it increases again as the projectile descends.

In the horizontal direction, the projectile has a uniform velocity since there are 
no forces acting in this direction (if air resistance is ignored).

Tips for problems involving projectile motion
General rules for solving problems involving projectile motion were given in the 
previous section—see page 95 for a reminder.

If a projectile is launched at an angle to the horizontal, trigonometry can be used 
to find the components of the initial horizontal and vertical velocity. Pythagoras’s 
theorem can then be used to determine the actual velocity of the projectile at any point 
as well as its direction with respect to the horizontal plane. Worked example 2.6.1 
demonstrates how this is done.
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Worked example 2.6.1

LAUNCH A PROJECTILE AT AN ANGLE

A 65 kg athlete in a long-jump event leaps with a velocity of 7.50 m s–1 at an angle 
of 30.0° to the horizontal.

g = 9.8 m s–2

7.50 m s–1

30.0°

+

–

In answering the following questions, treat the athlete as a point mass, ignore air 
resistance and use g = 9.8 m s–2.

a What is the athlete’s velocity at the highest point in the jump?

Thinking Working

First find the horizontal and vertical 
components of the initial speed.

30.0°

7.50 m s–1

uV

uH

Using trigonometry:

 uH = 7.50 cos 30.0°
 = 6.50 m s–1

 uV = 7.50 sin 30.0°
 = 3.75 m s–1

Projectiles that are launched obliquely 
move only horizontally at the highest point. 
The vertical component of the velocity at 
this point is zero. Thus the actual velocity 
is given by the horizontal component of the 
velocity. 

At maximum height, v = 6.50 m s–1 
horizontally to the right.

b What is the maximum height gained by the athlete’s centre of mass during 
the jump?

Thinking Working

To find the maximum height you must 
work with the vertical component of the 
velocity. Recall that the vertical component 
of velocity at the highest point is zero.

Vertically, taking up as positive:

 u = 3.75 m s–1

 a = –9.8 m s–2

 v = 0

 s = ?

Substitute these values into an appropriate 
equation for uniform acceleration. 

v2 = u2 + 2as

0 = 3.752 + 2 × −9.8 × s

Rearrange the equation and solve for s.
s = 3.752

19.6
= 0.72m
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c Assuming a return to the original height, what is the total time the athlete is 
in the air?

Thinking Working

As the motion is symmetrical, the time 
required to complete the motion will 
be double the time taken to reach 
the maximum height. First, the time 
it takes to reach the maximum height 
must be found.

Vertically, taking up as positive:

u = 3.75 m s–1

a = –9.8 m s–2

v = 0

t = ?

Substitute these values into an 
appropriate equation for uniform 
acceleration.

v = u + at

0 = 3.75 – 9.8t

Rearrange the formula and solve 
for t, the time needed to reach the 
maximum height.

t = 3.75
9.8

= 0.38s

The time to complete the jump is 
double the time it takes to reach the 
maximum height.

Total time = 2 × 0.383

= 0.77s

Worked example: Try yourself 2.6.1

LAUNCH A PROJECTILE AT AN ANGLE

A 50 kg athlete in a long-jump event leaps with a velocity of 6.50 m s–1 at 20.0° to 
the horizontal.

g = 9.8 m s–2

6.50 m s–1

20.0°

+

–

In answering the following questions, treat the athlete as a point mass, ignore air 
resistance and use g = 9.8 m s–2.

a What is the athlete’s velocity at the highest point in the jump?

b What is the maximum height gained by the athlete’s centre of mass during 
the jump?

c Assuming a return to the original height, what is the total time the athlete is 
in the air?

PHYSICSFILE

Motorcycle jumping
A motorcycle jumping is an example 
of projectile motion at an angle. The 
distance the motorcycle can jump is a 
function of its approach velocity to the 
ramp, the ramp angle, and the mass of 
the motorcycle and rider. Other factors 
also play a significant role, such as 
frictional forces, air resistance, wind 
speed, etc.

Robert ‘Robbie’ Maddison is an 
Australian motorbike stunt performer. 
He has broken several world records 
for the distance jumped and has 
successfully jumped distances over 
105 m and made a perfect landing. 
Some of his feats include jumping the 
Tower Bridge in London, with a backflip, 
while the drawbridge was open.

A motorcycle jumping on a dirt track is an 
example of a projectile launched at an angle
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CASE STUDY ANALYSIS

The physics of shot putting
In shot-put competitions there is an advantage in being tall. 
It means that the release height of the shot will be higher 
than that of a competitor who is not as tall. It also means 
the distance travelled by the shot will be greater.

At the 2020 Tokyo Olympic Games the men’s event was 
won by Ryan Crouser of the United State of America, with a 
distance of 23.30 m. Crouser is 201 cm tall. The gold medal 
for women was won by Gong Lijiao of China (175 cm tall), 
with a distance of 20.58 m.

When a projectile is launched at an angle to the 
horizontal, the theoretical launch angle that gives the 
maximum range is 45°. This applies only where a projectile 
lands at the same height as it was launched. A projectile 
could land at a point lower than its launch height. For 
example, shot putters launch their shot from above 
the ground. The theoretical launch angle for maximum 
range in this case is approximately 43°, depending on 
the actual release height. In reality, however, shot putters 
never release at this angle. This is because the speed at 
which they can launch the shot decreases as the angle 
gets further from the horizontal. Figure 2.6.2 shows the 
relationship between launch speed and launch angle.

The decrease in launch speed with an increase in launch 
angle is caused by two factors:

• When throwing with a high launch angle, the shot putter 
must expend a greater effort during the delivery phase 
to overcome the force of gravity. This reduces the launch 
speed.

• The structure of the shoulder and arm favours the 
production of putting force in the horizontal direction 
more than in the vertical direction.

The optimum launch angle for an athlete is obtained by 
combining the speed–angle relation for the athlete with 
the equation for the range of a projectile in free flight. For 
these reasons, the optimum launch angle for shot putters 
is actually around 34°.

Analysis
In a shot-put event a 3.0 kg shot is launched with an initial 
velocity of 7.5 m s–1 from a height of 1.6 m and at an angle 
of 45° to the horizontal.

1 What is the initial horizontal speed of the shot?

2 What is the initial vertical speed of the shot?

3 How long does it take the shot to reach its maximum 
height?

4 What is the maximum height from the ground reached 
by the shot?

5 What is the speed of the shot when it reaches its 
maximum height?

6 What distance does the shot put travel?
0
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FIGURE 2.6.2 A graph showing how launch speed is greatest with a 
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2.6 Review
SUMMARY

• Projectiles move in parabolic paths that can be 
analysed by considering the horizontal and vertical 
components of their motion.

• If air resistance is ignored, the only force acting on a 
projectile is the force due to gravity, Fg. This results 
in the projectile having a vertical acceleration of 
9.8 m s–2 downwards during its flight.

• The equations for uniform acceleration can be 
used to determine the vertical component. These 
equations are:

v = u + at

s = ut + 1
2
at2

v2 = u2 + 2as

• If air resistance is ignored, the horizontal velocity of 
a projectile remains constant throughout its flight. 
The appropriate equation is:

vav =
s
t

• For objects initially launched at an angle to the 
horizontal, it is useful to calculate the initial 
horizontal and vertical velocities using trigonometry.

• At its highest point, the projectile is moving 
horizontally. Its velocity at this point is given by the 
horizontal component of its launch velocity. The 
vertical component of the velocity is zero at this 
point.

OA
✓ ✓ 

KEY QUESTIONS

Knowledge and understanding
In answering the following questions, assume that the 
acceleration due to gravity is 9.8 m s–2 and ignore the 
effects of air resistance unless otherwise stated.

1 A javelin thrower launches her javelin at 35° above the 
horizontal. Describe how the horizontal velocity of the 
javelin changes during its flight.

2 James and Ollie are using a garden hose to water 
some raised veggie beds that are approximately waist 
height. The hose is quite short, and the water does not 
reach the farthest plants. James thinks if they hold the 
hose horizontally, all of the velocity of the water will 
be in the horizontal direction, so the water will reach 
the furthest. Ollie thinks the water will reach furthest if 
they hold the hose at 45°. Who is correct, and why? 

3 A rugby player kicks for a goal by taking a place kick 
with the ball at rest on the ground. The ball is kicked 
at 40° to the horizontal at 25 m s–1. At its highest point, 
what is the speed of the ball?

4 A basketballer shoots for a goal by launching the ball 
at 25 m s–1 at 30° to the horizontal.
a Calculate the initial horizontal speed of the ball.
b What is the initial vertical speed of the ball?
c What is the magnitude and direction of the 

acceleration of the ball when it is at its maximum 
height?

d What is the speed of the ball when it is at its 
maximum height?

Analysis
5 In a shot-put event a 3.5 kg shot is launched from a 

height of 1.8 m at an angle of 50° to the horizontal. Its 
initial velocity is 12 m s–1.

1.8 m

12 m s–1

50°

a What is the initial horizontal speed of the shot?
b What is the initial vertical speed of the shot?
c How long does it take the shot to reach its 

maximum height?
d What is the maximum height from the ground 

reached by the shot?
e What is the speed of the shot when it reaches its 

maximum height?
f What distance does the shot-put travel?
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6 A tennis player is using a tennis ball machine to 
practise her forehand. She sets the machine to launch 
tennis balls with an initial velocity of 22.0 m s−1 at an 
angle of 10.0° above the horizontal. The balls are 
launched from approximately the same height as her 
racquet. Give your answers to 3 significant figures.

10.0°

22.0ms–1

ground level

a Calculate the horizontal component of the velocity 
of the ball:
i initially
ii after 0.25 s
iii after 0.50 s

b Calculate the vertical component of the velocity of 
the ball:
i initially
ii after 0.25 s
iii after 0.50 s

c What is the speed of the tennis ball after 0.50 s?
d What is the speed of the ball as it hits her racquet?
e What horizontal distance does the ball travel before 

it hits her racquet—that is, what is its range?
f Describe what effect air resistance has on the ball.
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KEY TERMS

Chapter review 02air resistance
banked track
centripetal acceleration
centripetal force

design speed
frequency
inclined plane
magnitude

normal force
period
projectile
tangential

OA
✓ ✓

Knowledge and understanding
1 A bowling ball is rolling down a smooth straight 

ramp. Describe the speed and acceleration of the 
ball.

2 A cyclist is riding at high speed around a steeply 
banked section of a velodrome. Choose the option 
below that best describes the magnitude of the 
normal force acting on the cyclist.
A zero
B greater than the force of gravity on the cyclist
C equal to the force of gravity on the cyclist
D less than the force of gravity on the cyclist

3 A bowling ball is rolling down a smooth track that is 
inclined at 45° to the horizontal.
a What is the magnitude of the acceleration of 

the ball?
b How does the magnitude of the normal force 

acting on the ball compare to its force due to 
gravity?

4 Two students are discussing a demonstration in 
which a bucket half filled with water was swung at 
high speed in a vertical circle. No water spilled out 
of the bucket as it passed the overhead position. 
Dave states that at the top of the circle, a centrifugal 
force acts outwards against the force due to gravity 
and so holds the water in the bucket. Emma states 
that inertia keeps the water in the bucket and the 
normal force from the bucket keeps the water 
travelling in a circular path. Who is correct, and why?

5 Two blocks are connected by a string that passes 
over a smooth pulley. One of the blocks is placed on 
a frictionless table and the other is free to move up 
or down. The block on the table has a mass of 5.0 kg 
and the connected block has a mass of 10.0 kg.
a At what rate do the blocks accelerate?
b What is the magnitude of the tension in the 

string?

6 A skier of mass 90 kg is skiing down an icy 
slope that is inclined at 15° to the horizontal. In 
answering the following questions, assume that 
friction is negligible and that the acceleration due 
to gravity is 9.8 m s−2.

REVIEW QUESTIONS

a Determine the components of the force on the skier 
due to gravity perpendicular to the slope and parallel 
to the slope.

b Determine the normal force that acts on the skier.
c Calculate the acceleration of the skier down the slope.

7 A locomotive of mass 7500 kg is pulling two carriages. 
Carriage A has a mass of 10 000 kg and carriage B has a 
mass of 5000 kg. The locomotive accelerates at 2.0 m s−2. 
The drag force on carriage A is 2000 N, on carriage B it is 
1000 N and on the locomotive it is 1500 N.
a Calculate the driving force of the locomotive engine.
b Calculate the magnitude of the tension in the coupling 

between the two carriages.

8 A 1000 kg car tows a 200 kg trailer along a level surface 
at an acceleration of 2.5 m s–2. The frictional drag on the 
car is 800 N and the frictional drag on the trailer is 700 N. 
Calculate the driving force provided by the car engine to 
give this acceleration.

9 A marble is rolled from rest down a smooth slide that is 
3.5 m long. The slide is inclined at an angle of 40° to the 
horizontal.
a Calculate the acceleration of the marble.
b What is the speed of the marble as it reaches the end 

of the slide?

10 Marshall has a mass of 57 kg and is riding his 3.0 kg 
skateboard down a 5.0 m long ramp that is inclined at 
an angle of 65° to the horizontal. Ignore friction when 
answering questions a to d.
a Calculate the magnitude of the normal force acting on 

Marshall and his skateboard.
b What is the acceleration of Marshall as he travels down 

the ramp?
c What is the net force acting on Marshall and his board 

when no friction acts?
d If Marshall’s initial speed is zero at the top of the 

ramp, calculate his final speed as he reaches the 
bottom of the ramp.

e Marshall now stands halfway up the incline while 
holding his board in his hands. Friction now acts on 
him. Calculate the frictional force acting on Marshall 
while he is standing stationary on the ramp.

Hea
ds

ta
rt



107CHAPTER 2   |  NEWTONIAN THEORIES OF MOTION

11 During a high-school physics experiment, a copper ball 
of mass 25.0 g is attached to a very light piece of steel 
wire 0.920 m long and whirled in a circle at 30.0° to 
the horizontal, as shown in diagram (a). The ball moves 
in a circular path of radius 0.800 m with a period of 
1.36 s. The top view of the ball’s motion is shown in 
diagram (b).

30˚
25 g0.80 m

A

B

C

D

E

F

G

H

N

S
W E

0.92 m

(a) (b)

a Calculate the orbital speed of the ball.
b What is the centripetal acceleration of the ball?
c What is the magnitude of the centripetal force acting 

on the ball?
d Draw a diagram similar to diagram (a) showing all 

the forces acting on the ball.
e What is the magnitude of the tension in the wire?

12 A toy car is travelling in a circular path of radius 15 m 
at a constant speed of 7.5 m s–1.
a What is the acceleration of the toy car?
b What force is keeping the toy car moving in its 

circular path?

13 A cycling track has a turn that is banked at 40° to the 
horizontal. The radius of the track at this point is 30 m. 
Determine the speed at which a cyclist of mass 60 kg 
would experience no sideways force as they ride along 
this section of track.

14 The Ferris wheel at an amusement park has an arm 
of 10 m radius and its compartments move with a 
constant speed of 5.0 m s−1.
a Calculate the normal force that a 50 kg boy would 

experience from the seat when at the:
i top of the ride
ii bottom of the ride.

b After getting off the ride, the boy remarks to a friend 
that he felt lighter than usual at the top of the ride. 
Which option explains why he might feel lighter at 
the top of the ride?
A He lost weight during the ride.
B The strength of the gravitational field was weaker 

at the top of the ride.
C The normal force there was larger than the 

gravitational force.
D The normal force there was smaller than the 

gravitational force.

15 A toy car is moving at 3.75 m s–1 as it rolls off a 
horizontal table. The car takes 1.5 s to reach the floor.
a How far does the car land from the table?
b What is the magnitude and direction of acceleration 

when the car is halfway to the floor?

16 A bowling ball of mass 8.75 kg travelling at 15.0 m s–1 
rolls off a horizontal table that is 1.27 m high.
a What is the horizontal speed of the ball as it strikes 

the floor?
b What is the vertical speed of the ball as it strikes 

the floor?
c Calculate the speed of the ball as it reaches 

the floor.

Application and analysis
17 In a tennis match, a tennis ball is hit from a height 

of 1.70 m with an initial velocity of 18.5 m s–1 at an 
angle of 46.0° to the horizontal. Ignore drag forces in 
answering the following questions.
a What is the initial horizontal speed of the ball?
b What is the initial vertical speed of the ball?
c What is the maximum height that the ball reaches 

above the court surface?

18 An experiment examined the relationship between the 
distance an object travels and the time it takes to travel 
that distance as it falls from a height of 20 m. The 
following data show the distance the object has fallen 
and the time when the object was at that distance. For 
example, 1.212 seconds after the object was dropped 
it had fallen 7.2 metres.

Distance (m) Time (s)

0 0.000

1 0.452

2.5 0.714

3 0.782

5 1.010

7.2 1.212

9.1 1.363

11.5 1.532

13.2 1.641

a What is the rate at which the object drops?
b Plot the time to fall (s) as a function of distance the 

object has fallen (m).
c Predict the time taken to fall 15 m.
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CHAPTER REVIEW CONTINUED

19 An experiment is conducted to examine the 
relationship between the horizontal distance an object 
travels and the vertical distance an object falls when 
launched at an angle of 25° from the horizontal, 
from a vertical height of 15 m.  An electronic device 
collected the data: the horizontal distance travelled 
and the vertical height at each 0.1 s in time.

Horizontal distance 
travelled (m)

Time (s) Height (m)

0.1 0.1 15

0.2 0.2 15.2

0.3 0.3 15.6

0.4 0.4 16.2

0.5 0.5 17

0.6 0.6 18

0.7 0.7 19.2

0.8 0.8 18

0.9 0.9 17

1 1 16.2

1.1 1.1 15.6

1.2 1.2 15.2

1.3 1.3 15

1.4 1.4 14.3

1.45 1.5 13.6

1.5 1.6 12.8

1.55 1.7 12.2

1.6 1.8 11.5

1.65 1.9 10.9

1.7 2 10.1

1.75 2.1 9.5

1.8 2.2 8.7

1.85 2.3 8.2

1.9 2.4 7.6

1.95 2.5 6.5

2 2.6 5.8

2.05 2.7 5.1

2.1 2.8 4.3

2.15 2.9 3.7

2.2 3 2.9

2.25 3.1 2

a Plot the horizontal distance travelled by the object 
as a function of time.

b Using the data, calculate the horizontal velocity of 
the object.

c Plot the horizontal velocity as a function of time. 
What observations can you make from the plot?

d Using the data, calculate the horizontal acceleration 
of the object.

e Plot the horizontal acceleration as a function of time. 
What observations can you make from the plot?
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