

STUDENT COMPANION

Pearson Secondary Teaching Hub Maths 9

 Student Companion

 Student Companion}

Lead author

Nicola Silva

Contributing authors

Greg Carroll, David Coffey, Grace Jefferson and Garthe Jones

Pearson acknowledges the Traditional Custodians of the lands upon which the many schools throughout Australia are located.

We respect the living cultures of Aboriginal and Torres Strait Islander peoples and their ongoing connection to Country across lands, sky, seas, waterways and communities. We celebrate the richness of Indigenous Knowledge systems, shared with us and with schools Australia-wide.

We pay our respects to Elders, past and present.

Pearson Australia

(a division of Pearson Australia Group Pty Ltd)
459-471 Church Street
Level 1, Building B
Richmond, Victoria 3121
www.pearson.com.au
Copyright © Pearson Australia 2024
(a division of Pearson Australia Group Pty Ltd)
First published 2024 by Pearson Australia
2027202620252024
10987654321

Reproduction and communication for educational purposes

The Australian Copyright Act 1968 (the Act) allows a maximum of one chapter or 10% of the pages of this work, whichever is the greater, to be reproduced and/or communicated by any educational institution for its educational purposes provided that that educational institution (or the body that administers it) has given a remuneration notice to the Copyright Agency under the Act. For details of the copyright licence for educational institutions contact the Copyright Agency (www.copyright.com.au).

Reproduction and communication for other purposes

Except as permitted under the Act (for example any fair dealing for the purposes of study, research, criticism or review), no part of this book may be reproduced, stored in a retrieval system, communicated or transmitted in any form or by any means without prior written permission. All enquiries should be made to the publisher at the address above.
This book is not to be treated as a blackline master; that is, any photocopying beyond fair dealing requires prior written permission.
Project Leads: Julian Lumb, Lindy Sharkey, Jack Sagar, Natalie Bennett
Development Editor: Anna Pang
Schools Programme Manager: Michelle
Production Editors: Maddy Higginson, Jalmi Kuster
Rights \& Permissions Editor: Amirah Fatin Binte Mohamed
Sapi'ee
Illustrators: QBS Learning
Proofreader: Lucy Bates, Scott Vanderva
Series Design: Watershed A
Typesetters: Integra Software Services
Desktop Operator: Jit-Pin Chong
Printed in Australia by Pegasus
ISBN 9780655713845
Pearson Australia Group Pty Ltd ABN 40004245943

Disclaimer

Any internet addresses (URLs) provided for this Student Companion were valid at the time of publication and were chosen as being appropriate for use as a secondary education research tool. However, due to the dynamic nature of the internet, some addresses may have changed, may have ceased to exist since publication, or may inadvertently link to sites with content that could be considered offensive or inappropriate. While the authors and publisher regret any inconvenience this may cause readers, no responsibility for any such changes or unforeseeable errors can be accepted by either Pearson Australia or the authors.

Attributions

COVER
Shutterstock: BetterPhoto, basketball; Crusitu. Robert Lucian (microchip); empics, graphs and catculator; Retouch man, diamond.

123RF: Mino21, p. 154t.
FIFA: Extracts from FIFA Women's World Cup Australia \& New Zealand 2023™ - Beyond Greatness ${ }^{\text {TM }}$. pp. 158-61.
Fortune Business Insights: Based on data from www.fortunebusinessinsights.com, p. 163.
Fresh Property Management Group: Based on data from www.valuewalk.com via Fresh Property Management Group, p. 172.
Savings.com.au: Based on data from Macrotrends via savings. om.au. p. 168t.
Shutterstock: LStockStudio, p 154b.
1 Real numbers 1
Identify and define irrational numbers 1
Apply irrational numbers 4
Plot and locate irrational numbers on a number line by estimation and by construction 6
2 Exponents 9
Establish and apply the exponent law for multiplication 9
Establish and apply the exponent law for division 11
Establish and apply the exponent law for raising a power to a power 13
Establish and apply the exponent law for raising to the power of 0 15
Apply exponent laws to numerical expressions with negative integer exponents 17
Apply exponent laws to simplify numerical expressions 19
Choose and apply efficient strategies to exponent laws of numericalexpressions21
Apply exponent laws to simplify algebraic expressions 23
3 Algebra 26
Understand and use the distributive law 26
Recognise, expand and factorise special binomial products 29
Understand algebraic factorisation 32
Factorise simple quadratics 35
4 Linear relationships and graphs 37
Determine the gradient of straight-line graphs 37
Sketch and analyse linear graphs 40
Determine the equation of a straight line 43
Model practical contexts with linear equations 45
Determine the distance betweenpoints and the coordinates ofthe midpoint47
Transform linear graphs 52
Interpolate and extrapolate 56
5 Quadratic relationships and graphs 57
Understand solutions to simple quadratic equations 57
Solve monic quadratic equations using the Null Factor Law 59
Identify and plot the key features of quadratic graphs 63
Determine transformations of parabolas 66
Solve quadratic equations graphically 70
Model and solve practical problems with quadratic equations 72
6 Surface area and volume 75
Determine the volume of right prisms 75
Solve problems involving the volumes and capacities of right prisms and right pyramids 77
Solve problems involving the surface areas and nets of right prisms 80
7 Circles and cylinders 84
Calculate circumference and area in terms of π 84
Determine the radius of a circle from the area or circumference 86
Determine the surface area of cylinders 88
Solve problems involving the surface area of cylinders 90
Volume and capacity of cylinders 91
Understand the relationship between the volume and dimensions of cylinders 93
8 Measurement and scientific notation 95
Identify and describe very small and very large measurements 95
Express numbers in scientific notation and decimal form 97
Order and perform calculations using numbers in scientific notation 99
Estimate and round numbers to a specified degree of accuracy 101
9 Percentage error in measurement 103
Determine the precision and absolute error of measurements 103
Estimate the degree of accuracy 105
Determine the percentage error in measurements and calculations 106
10 Pythagoras and geometry 108
Apply Pythagoras' theorem to solve problems 108
Calculate the distance between two points on a Cartesian plane 111
Understand when right-angled triangles are similar 117
Use the triangle inequality theorem 123
11 Modelling situations with measurement and rates 125
Model direet proportion 125
Use formulas that model rates 129
12 Trigonometry 131
Understand right-angled triangle trigonometry 131
Use trigonometry to solve an unknown side length in a right-angled triangle 134
Use trigonometry to solve an unknown angle in a right-angled triangle 138
Define a right-angled triangle 141
13 Ratios and proportion in space 143
Understand the effect of the enlargement transformation 143
Calculate the area of a shape or the volume of an object using a scale factor 147
Use images and proportion to estimate lengths 153
Ascertain compliance involving horizontal and vertical distances 156
14 Analysing and interpreting statistics 158
Analyse statistical reports in digital media 158
Question the view presented in media reports 162
15 Displaying and comparing statistical data 164
Represent data using statistical displays 164
Justify the selection of particular data displays 170
16 Probability (compound events, relative frequencies) 175
Use tables and tree diagrams to represent two- and three-step chance events 175
Calculate the probability of compound events 180
Estimate the probability of events 184
Design and conduct experiments and simulations 187

How to use this Student Companion

The Student Companion is a complementary resource that offers a print medium for corresponding lessons in Pearson Secondary Teaching Hub. It is designed to support teaching and learning by providing learners with a place to create a portfolio of learning to suit their individual needs, whether you are:

- supporting a blended classroom using the strengths of print and digital

■ preparing for exams by creating a study guide or bound reference
■ needing a tool to differentiate learning or
■ looking for meaningful homework tasks.
Learners can develop their portfolio of learning as part of classroom learning or at home as an additional opportunity to engage and re-engage with the knowledge and skills from the lesson.
This could be done as prior learning in a flipped classroom environment or as an additional revision or homework task.

Learning intention and success criteria

Learning intentions are provided for every lesson. The learning intentions are goals or objectives that align to the corresponding digital lesson. They describe what learners should know, understand or be able to do by the end of the lesson.

Success criteria clarify expectations and describe what success looks like. The success criteria are specific, concrete and measurable so learners can actively engage with and reflect on their evidence of learning within each lesson.

Worked examples

Worked examples provide learners with a step-by-step solution to a problem. The worked examples in the Student Companion correspond to those in the digital lesson and are provided for each skill to:
■ scaffold learning

- support skill acquisition
- reduce the cognitive load.

The worked examples are an effective tool to demonstrate what success looks like. The 'try yourself' format of the worked examples in the Student Companion support the gradual release of responsibility. Learners can view a completed worked example and a video walkthrough of the worked example in the corresponding digital lesson and then apply the scaffolded steps themselves to solve a unique problem.

Practice questions are provided in the Student Companion so that learners can apply the knowledge and skills obtained in the worked example given. These questions are designed to ensure learners build confidence and demonstrate efficiency. They follow on from the Check your understanding questions beside the corresponding worked example in the digital lesson.
 design of the lesson reflection tool allows students to scale their confidence, reflect

1 For the circle shown, use the following rules.
(a) $\mathrm{C}=2 \pi r$ to calculate the circumference
(b) $A=\pi r^{2}$ to calculate the area

Give your answers
(i) in exact form, and
(ii) accurate to 2 decimal places.

(a) \qquad (b) \qquad

SC 2: I can apply irrational numbers in the solution of problems
Worked example: Calculating exact lengths that have irrational values and then give a decimal approximation
Calculate the following lengths in exact form, then approximate the lengths correct to 1 decimal place.
(a) The exact circumference of a circle of diameter 8 an

(b) The exact length of the diagonal of a square of side length 6 cm

RATE MY
LEARNING
I need some help

```
I am getting there
```

I get it

I am confident on their learning and identify areas in which they need support.

Simplify teaching \& energise learning

Newly added content

Discover Pearson Secondary Teaching Hub for years 7 to 10.

Pearson Secondary Teaching Hub has been designed to simplify teaching and energise learning across multiple subjects. Every Secondary Teaching Hub subject offers best-practice learning design delivered in flexible formats for the modern classroom, plus uniquely developed content structures and features for each subject.

This solution provides continuity for students from one class to the next and a rare whole-school view for school leadership while still delivering the rigour and support teachers need to help students meet the specific outcomes of their curriculum area.

> Discover Pearson Secondary Teaching Hub pearson.com.au/teaching-hub

Real numbers

Identify and define irrational numbers

Learning intention: To be able to identify and define irrational numbers

Success criteria:

\square SC 1: I can define a rational number and determine whether a number is rational or irrational.SC 2: I can use a number line to indicate the solution interval for inequalities.

SC 1: I can define a rational number and determine whether a number is rational or irrational

Worked example: Identifying rational numbers in a list

Label each of the following numbers as either rational or irrational.
$\sqrt{64}, 15 \pi,-5.27,2 . \dot{7}, \sqrt{125}$ and $\sqrt[3]{-27}$

Thinking	Working
Recall the definition of a rational number.	A number that is rational can be written in the form $\frac{a}{b}$. Examine the square roots.
Examine the cube root.	
Identify any recurring and terminating decimals. Recurring and terminating decimals are rational.	
Identify any terms that contain transcendental numbers $(\pi$ or $e)$, which are irrational.	

1 Label each of the following numbers as rational or irrational. For the rational numbers, show the value expressed in the form $\frac{a}{b}$, where a and b are integers.
(a) $5 \frac{1}{3}$
(b) $\sqrt{1000}$
(c) $\sqrt[3]{800}$
(d)

(e) $6 . \dot{2}$
(f) $-\sqrt{400}$

2 Express each of the following numbers in the form $\frac{a}{b}$, thus confirming they are rational. In each case, express the fraction in simplest form.
(a) $3.2525 \ldots$
(b) 0.72
(c) $6 . \overline{003}$
(d) 1.5202

SC 2: I can use a number line to indicate the solution interval for inequalities

Worked example: Showing a solution interval on a number line

Show the following intervals on a number line.
(a) $-2 \leq x<3$

| Thinking | Working |
| :--- | :--- | :--- |
| Plot the endpoints on the number line using a
 closed circle for an included value and an open
 circle if it is not included.
 Complete the number line with a line segment
 between the plotted points. | |
| (b) $x+5<3$ | |

(b) $x+5<3$

(c) $-4 x \leq 6$

Thinking	Working								
Solve the inequality to determine the value of the unknown. Note that when multiplying or dividing by a negative number, the inequality sign is reversed.									
Plot the endpoint on the number line using a closed circle for the included end value. Complete the number line with a line and arrow.									

1 Draw and label the following solution intervals on the number line below.
(a) $x<-1$
(b) $x \geq 3$
(c) $-1<x \leq 2$

2 State the solution interval shown in each of the following diagrams.
(a)

(b)

(c)

3 Solve each of the following inequalities and show the solution interval on a number line.
(a) $2 x+1 \geq 4$

(b) $6 x+12 \leq-3$

(c) \qquad
\qquad

Apply irrational numbers

Learning intention: To be able to apply irrational numbers

Success criteria:

SC 1: I can write approximate values for irrational numbers.
\square SC 2: I can apply irrational numbers in the solution of problems.

SC 1: I can write approximate values for irrational numbers

Worked example: Writing a decimal approximation for an irrational number

Write the value of $\sqrt{8}$ correct to 2 decimal places and 4 decimal places.

Thinking	Working
Use your calculator to obtain a value for the	
irrational number.	
Examine the third digit after the decimal point. If	
the digit is 0-4, round down. If the digit is	
$5-9$, round up.	
Examine the fifth digit after the decimal point	
and round as before.	

1 Write each of the following irrational numbers as a decimal correct to
(i) 1 decimal place
(ii) 4 decimal places.
(a) $\sqrt{13}$
(b) $\sqrt{40}$
(c) $\sqrt[3]{16}$
(d) $\sqrt[3]{75}$

2 Write each of the following irrational numbers as a decimal correct to
(i) 1 decimal place
(ii) 4 decimal places.
(a) $5 \pi+9$
(b) $\frac{7 \pi}{8}$
(c) $e+6$
(d) $\frac{5 e+2}{4}$
\qquad
\qquad

SC 2: I can apply irrational numbers in the solution of problems

Worked example: Calculating exact lengths that have irrational values and then give a decimal approximation

Calculate the following lengths in exact form, then approximate the lengths correct to 1 decimal place.
(a) The exact circumference of a circle of diameter 8 cm

Thinking	Working
Recall the formula for the circumference of a circle.	
Substitute the known values and simplify.	
Write the answer.	

(b) The exact length of the diagonal of a square of side length 6 cm

Thinking	Working
Draw a diagram showing a right-angled triangle, marking the length to be calculated as x.	
Recall Pythagoras' theorem for right-angled triangles.	
Substitute the known values and simplify.	
Take the square root of the number, ignoring the possibility of a negative value, since lengths are positive.	
Write the answer.	

1 For the circle shown, use the following rules.
(a) $C=2 \pi r$ to calculate the circumference
(b) $A=\pi r^{2}$ to calculate the area

Give your answers
(i) in exact form, and
(ii) accurate to 2 decimal places.

(a) \qquad
\qquad
\qquad
\qquad
(b) \qquad
\qquad
\qquad
\qquad

RATE MY LEARNING

Plot and locate irrational numbers on a number line by estimation and by construction

Learning intention: To be able to plot and locate irrational numbers on a number line by estimation and by construction

Success criteria:

SC 1: I can estimate the location of irrational numbers on a number line.
\square SC 2: I can use construction techniques to accurately locate irrational numbers on a number line.

SC 1: I can estimate the location of irrational numbers on a number line

Worked example: Plotting an approximate value for an irrational number on a number line

Write the value of 2π correct to 2 decimal places and plot its position on a number line.

Thinking	Working
Write the approximate value of the irrational number.	
Identify more rounded values above and below the approximation.	
Draw a number line showing the approximate value.	

1 Plot each of the following irrational numbers on the number line below.
$\sqrt{10}, \sqrt{5}, \frac{3 \pi}{4}, \frac{e^{2}}{2}$

2 List the following irrational numbers $\sqrt{12}, \sqrt[3]{-15},-\frac{5 \pi}{2}, \sqrt{14},-\sqrt[3]{20}, \sqrt[3]{6},-\frac{3 e}{2}$ in
(a) ascending order
\qquad
(b) descending order.

SC 2: I can use construction techniques to accurately locate irrational numbers on a number line

Worked example: Using construction to show the location of an irrational number on a number line

(a) Construct a right-angled triangle on a number line and use the construction to plot the position of $\sqrt{5}$.

Thinking	Working
Write 5 as the sum of two square numbers.	-
Use Pythagoras' theorem to determine the side lengths. Draw a right-angled triangle on grid paper, with base 2 , height 1 and hypotenuse $\sqrt{5}$.	
Set the compass radius to the length of the hypotenuse ($\sqrt{5}$ units). With the compass point at 0 , draw an arc from the vertex to the number line. Mark the point at which the arc intersects the number line as the location of $\sqrt{5}$.	

(b) Use the construction in (a) to plot the position of $\sqrt{10}$ on the number line.

Thinking	Working				
Write 10 as the sum of two squares of either whole numbers, or lengths on the original construction.					
Draw a right-angled triangle on grid paper, with base $\sqrt{5}$, height $\sqrt{5}$ and hypotenuse $\sqrt{10}$. Set the compass radius to the length of the hypotenuse ($\sqrt{10}$ units). With the compass pointat 0 , draw an arc from the vertex to the number line. Mark the point at which the arc intersects the number line as the location of $\sqrt{10}$.		1	2	3	$\underset{4}{\longrightarrow}$

1 Write each of the following numbers as the sum of two positive square numbers, and hence write the side lengths of a right-angled triangle for which the lengths of the shorter sides are whole numbers of units and the length of the hypotenuse involves a surd.
(a) 26
(b) 32
(c) 34

Real numbers

2 On the number line and grid below:
(a) construct a right-angled triangle with a hypotenuse of $\sqrt{45}$ units and draw an arc to the number line
(b) use the construction in part (a) to form a right-angled triangle to enable $\sqrt{61}$ to be plotted on the number line.

3 (a) Write your own instructions for how you can construct a length of $\sqrt{130} \mathrm{~cm}$ using a ruler and a compass.
\qquad
\qquad
\qquad
(b) Draw the construction from part (a).

