PEARSON BIOLOGY QUEENSLAND

SKILLS AND ASSESSMENT

Pearson Biology 11 QLD Skills and Assessment Book

$\operatorname{HOW}\nolimits$ to use this book		v	TOPIC 2 MULTICELLULAR	RORGANISMS	
SERIES OVERVIEW		viii	KEY KNOWLEDGE		52
BIOLOGY TOOLKIT		ix	WORKSHEETS		
	AND MULTICELLULAR		WORKSHEET 1.2.1	Knowledge preview—revisiting structure and function of organisms	62
ORGANISMS TOPIC 1 CELLS AS THE BA	ASIS OF LIFE		WORKSHEET 1.2.2	Organised organisms—levels of organisation in multicellular	62
KEY KNOWLEDGE		3	WORKSHEET 1.2.3	organisms Cells on a mission—cell	63
WORKSHEETS				specialisation	65
WORKSHEET 1.1.1	Knowledge preview— basic biology	11	WORKSHEET 1.2.4 WORKSHEET 1.2.5	Super stem cells—cell potential Lifeline—the mammalian	66
WORKSHEET 1.1.2	Poor pot plant—controlled experiments	12	WORKSHEET 1.2.6	circulatory system Gas exchange—human	67
WORKSHEET 1.1.3	Model membranes— structure and function	14	WORKSHEET 1.2.7	respiratory system Digesting dinner—	68
WORKSHEET 1.1.4	Selective cells—cell membranes and selectivity	15	WORKSHEET 1.2.8	heterotroph digestion Excretion excellence—	69
WORKSHEET 1.1.5	The inside story on cell structure	17	WORKSHEET 1.2.9	comparing systems Open all hours—photosynthesis and gas exchange in plants	70 71
WORKSHEET 1.1.6	Enzyme ABC—amazing biological catalysts	19	WORKSHEET 1.2.10	Literacy review—terms for transport	73
WORKSHEET 1.1.7	Active enzymes—properties of enzymes	20	WORKSHEET 1.2.11	Thinking about my learning	74
WORKSHEET 1.1.8	Reciprocal reactions—		PRACTICAL ACTIVITIES		
W05//01/55 4 4 0	photosynthesis and cellular respiration	22	ACTIVITY 1.2.1	The heart of the matter— heart structure and function	75
WORKSHEET 1.1.9	Literacy review—language to learn from	23	ACTIVITY 1.2.2	Food tubes—comparing digestive systems	80
WORKSHEET 1.1.10	Thinking about my learning	26	ACTIVITY 1.2.3	Rat dissection—mammalian	00
PRACTICAL ACTIVITIES				systems	82
ACTIVITY 1.1.1	Partially permeable membranes—diffusion	00	ACTIVITY 1.2.4	Tubes for transport—vascular tissue in plants	87
ACTIVITY 1.1.2	and osmosis Paramount pathways— photosynthesis and cellular	28	UNIT 1 TOPIC 2 REVIEW		91
	respiration	32	SAMPLE ASSESSMENT TA	ASK IA1: DATA TEST	95
MANDATORY PRACTICAL	LS		SAMPLE ASSESSMENT TA		
PRACTICAL 1	Shaping up—surface area to volume ratio and diffusion	36	STUDENT EXPERIMENT		100
PRACTICAL 2	Observing cells—a closer look using the light microscope	39			
PRACTICAL 3	Capable catalase— investigating temperature and enzyme efficiency	44			
LINIT 1 TODIO 1 DELVEN	and onzyme emolettoy				
UNIT 1 TOPIC 1 REVIEW		47			

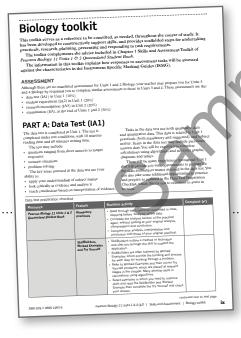
Contents

UNIT 2: MAINTA	INING THE INTERNAL		TOPIC 2 INFECTIOUS DISEASE			
ENVIRONMENT			KEY KNOWLEDGE		147	
TOPIC 1 HOMEOSTASIS			WORKSHEETS			
KEY KNOWLEDGE		107	WORKSHEET 2.2.1	Knowledge preview— revisiting foundation ideas	155	
WORKSHEETS WORKSHEET 2.1.1	Knowledge preview—		WORKSHEET 2.2.2	Tricky trespassers—pathogens and their adaptations	157	
WORKSHEET 2.1.2	revisiting foundation ideas Signalling cells—cell	114	WORKSHEET 2.2.3	Entry denied—defence against invading pathogens	158	
	communication	115	WORKSHEET 2.2.4	Innumerable immune		
WORKSHEET 2.1.3	Friendly feedback— water balance in mammals	117		responses—self-defence mechanisms	160	
WORKSHEET 2.1.4	Reflex responses—simple stimulus–response pathways	118	WORKSHEET 2.2.5	Target practice—aiming antibodies at invaders	161	
WORKSHEET 2.1.5	Get the message—signal transduction in cells	120	WORKSHEET 2.2.6	Acquiring immunity— antibodies and immunity	162	
WORKSHEET 2.1.6	Proficient plants— regulation in plants	122	WORKSHEET 2.2.7	Polio—an all-but-eradicated pestilence	164	
WORKSHEET 2.1.7	Literacy review—routine regulatory mechanisms in animals and plants	123	WORKSHEET 2.2.8 WORKSHEET 2.2.9	Literacy review—disease dictionary	166	
WORKSHEET 2.1.8	Thinking about my learning	123	PRACTICAL ACTIVITIE	Thinking about my learning	167	
PRACTICAL ACTIVITIES			ACTIVITY 2.2.1			
ACTIVITY 2.1.1	Australian endotherms and ectotherms—temperature	16	0	Protecting the herd—acquiring immunity against vaccine- preventable diseases	168	
ACTIVITY 2.1.2	regulation	126	ACTIVITY 2.2.2	Hygienic hands—effective handwashing	176	
ACTIVITY 2.1.2	A tale of two rats— investigating water balance in mammals	130	MANDATORY PRACTIC	-	170	
		130	PRACTICAL 5	Blitzing bacteria—antibiotics		
MANDATORY PRACTICA				and bacterial growth	180	
PRACTICAL 4	Restricting the flow— stomata and water regulation in plants	134	UNIT 2 TOPIC 2 REVIE	W	184	
UNIT 2 TOPIC 1 REVIEW			SAMPLE ASSESSMENT TASK IA3: RESEARCH INVESTIGATION			

How to use this book

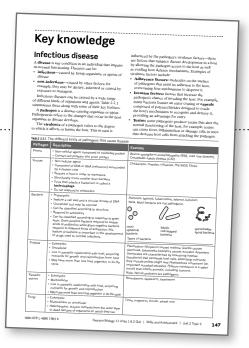
The Pearson Biology 11 Queensland Skills and Assessment Book takes an intuitive, self-paced approach to science education that ensures every student has opportunities to practice, apply and extend their learning through a range of supportive and challenging activities.

This resource has been developed by highly experienced and expert author teams, with lead Queensland specialists who have a working understanding of what teachers are looking for to support teaching and learning across the new QCE.


Written to fully support the new QCE Years 11 and 12 syllabus, the *Skills and Assessment Book* is organised by units. The **unit opener** outlines the unit objectives.

The *Skills* and *Assessment Book* is further organised into topics. Each **topic** addresses all of the subject matter and mandatory practicals from the syllabus.

All activities integrate into the *Pearson Biology 11 Queensland Student Book* for a complete teaching, learning and assessment program, making integration of practice and rich learning activities a seamless inclusion. The resource has been designed so it may be used independently of the Student Book, providing flexibility in when and how to engage with it.


Toolkit

A complementary Toolkit supports development of the skills and techniques needed to undertake practical investigations, the data test, the student experiment and research investigation. It covers study skills and also includes checklists and helpful hints to assist in fulfilling all assessment requirements.

Key knowledge

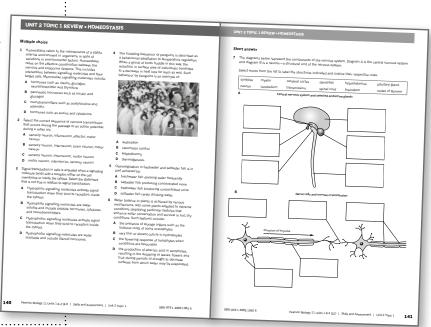
Each topic begins with a key knowledge section. Key knowledge consists of a set of succinct summary notes that cover the subject matter for each topic of the syllabus. This section is highly illustrative and written in a straightforward style to assist students of all abilities to focus on the salient points. Key terms are in bold for ease of navigation and are reflected in the Student Book glossary. Key knowledge also serves as a ready reference when completing worksheets and practical activities. It also provides a handy set of revision and study notes.

Worksheets

A diverse offering of instructive and self-contained worksheets is included in each topic. Common to all topics are the initial 'Knowledge preview' worksheets to activate prior knowledge; a 'Literacy review' worksheet to explicitly build language and application of scientific terminology; and finally a 'Thinking about my learning' worksheet, which encourages students to reflect on their learning and identify areas for improvement. Other worksheets, with their range of activities and tasks, help consolidate learning and the making of connections between subject matter.

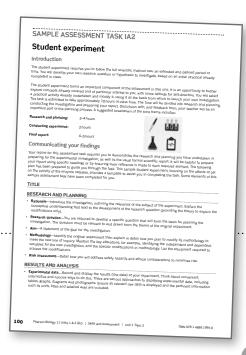
Worksheets may be used for formative assessment and are clearly aligned to the syllabus. A range of questions building from foundation to challenging is included in the worksheets, which are written to reflect the Marzano and Kendall's taxonomy of instructional verbs.

	SHEET 2.1.1	
Know	ledge previev	v—revisiting foundation ideas
This activity a key ideas in t	aims to refresh your recall of this module are built.	foundation ideas in biclogy that you have studied before and on which the
1 The health and endor a Homes	n and well-being of your body rine systems to maintain a st	HOMEOTICS ASS Yellow Conservations, including the smooth integration of the narrows, babble information, and about the conservations, and the conservation of the narrows babble information of the narrows to the conservation of the narrows to the narrows t
a nome	ostasis	
b Endocr	rine system	
c Neuron		
d Hormon	ne	
 Stimulus 	a factor that provokes a res	or and pencil to pair the terms on the left with their correct descriptions on sponse signals about change in the internal or external environment receptor their responds to stimuli related to temperature
	Photoreceptor	
		receptor that responds to chemical stimuli, e.g. taste, smell
	thermoreceptor	receptor that responds to light stimuli
	chemoreceptor	receptor that responds to touch or pressure stimuli
3 Describe one		receptor that responds to touch or pressure stimuli espond to environmental stimuli.
3 Describe one		


PRACTICAL ACTIVITY 2.1.1.1 Australian endotherms and ectotherms— temperature regulation Segreted devalence formular Research and planning AN 1. distinguish between establemm and endocherms. 1. concriber functions were establemm and endocherms. 1. concriber functions reading on the properties of the properties of

Practical activities

Practical activities take a highly scaffolded approach from beginning to completion and give students the opportunity to complete practical work related to the subject matter covered in the syllabus. Practical activities include a rich assortment of tasks that maximise learning opportunities, while also building experience in skill application to perform calculations and analysis of data, necessary for the Data Test. Every mandatory practical is featured, as well as many suggested practicals. As with the worksheets, a range of questions building from foundation to challenging are included, which are written to reflect the Marzano and Kendall's taxonomy of instructional verbs.


Topic review questions

Each topic concludes with a comprehensive set of questions consisting of multiple-choice and short-answer responses written in exam style. This provides students with exposure to, and the opportunity to practise drawing together subject matter and skills to respond to examination-style assessment.

Sample assessment tasks

Sample Assessment Tasks for the Data Test, Student Experiment and Research Investigation provide opportunities for students to practise responding to these assessment tasks. The activities are designed to support students by guiding and scaffolding them through each aspect of these assessments.

Icons and features

Every mandatory practical is supported by a complementary SPARKlab alternative practical.

The Pearson Biology Skills and Assessment Book icons in the Student Book indicate the best time to engage with an activity from the Skills and Assessment Book. Use the activities for practice, application and revision of subject matter.

The type of activity is indicated by the following icons in the Student Book:

Worksheet (WS)

Topic review (TR)

Mandatory practical (

Practical activity (PA)

Sample Assessment Task (SAT)

The **safety icon** highlights significant hazards, indicating caution is needed.

The safety glasses icon highlights that protective eyewear is to be worn during the practical activity.

Rate my learning

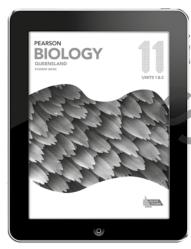
This innovative feature appears at the end of most worksheets, all practical activities and sample assessment tasks. It provides students with the opportunity for self-reflection and self-assessment. Students are encouraged to consider how they can continue to improve, and identify areas of focus for further skill and subject matter development. This tool has been based on the Marzano and Kendall's taxonomy of instructional verbs.

RATE MY	I get it.	I get it.	I almost get it.	I get some of it.	I don't get it.
LEARNING	 I can apply/teach it. 	I can show I get it.	 I might need help. 	I need help.	 I need lots of help.

Teacher support

Fully worked solutions, suggested answers and responses to sample assessment tasks, as well as practical activity support including full risk assessments, expected results and handy hints are provided for teachers, through the teacher support subscription.

Series overview

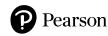

Student Book

Pearson Biology 11 Units 1 & 2 Queensland has been developed by experienced Queensland teachers to address all the requirements of the new QCE Biology 2019 Syllabus. The series features the latest developments and applications of biology, literacy and instructional design to ensure the content and concepts are fully accessible to all students.

Skills and Assessment Book

The *Skills and Assessment Book* gives students the edge in preparing for all forms of assessment. Specifically prepared to provide opportunities to consolidate, develop and apply subject matter and science inquiry skills, this resource features a toolkit, key knowledge summaries, worksheets, practical activities and guidance, assessment practice and exam-style topic review sets.

Reader+ the next generation eBook


Pearson Reader+ lets you use your Student Book online or offline, anywhere and anytime, on any device. Pearson Reader+ retains the look and integrity of the printed book and includes extras such as videos, interactives and answers.

Teacher Support

Pearson Biology 11 Units 1 & 2 Queensland Teacher Support provides:

- complete answers, fully worked solutions or suggested answers to all Student Book and Skills and Assessment Book tasks
- mandatory practical expected results, common mistakes, suggested answers and full safety notes and risk assessments
- teaching, learning and assessment programs

Access your digital resources at **pearsonplaces.com.au** Browse and buy at **pearson.com.au**

TOPIC

Cells as the basis of life

	Worksheet 1.1.1 Knowledge preview—basic biology
	Worksheet 1.1.2 Poor pot plant—controlled experiments
CE	ELL MEMBRANE
	Worksheet 1.1.3 Model membranes—structure and function
	Worksheet 1.1.4 Selective cells—cell membranes and selectivity
	Practical activity 1.1.1 Partially permeable membranes—diffusion and osmosis
	Mandatory practical 1 Shaping up—surface area to volume ratio and diffusion
PR	OKARYOTIC AND EUKARYOTIC CELLS
	Worksheet 1.1.5 The inside story on cell structure
	Worksheet 1.1.8 Reciprocal reactions—photosynthesis and cellular respiration
	Practical activity 1.1.2 Paramount pathways—photosynthesis and cellular respiration
	Mandatory practical 2 Observing cells—a closer look using the light microscope
IN [*]	TERNAL MEMBRANES AND ENZYMES
	Worksheet 1.1.6 Enzyme ABC—amazing biological catalysts
	Worksheet 1.1.7 Active enzymes—properties of enzymes
	Mandatory practical 3 Capable catalase—investigating temperature and enzyme efficiency
EN	IERGY AND METABOLISM
	Worksheet 1.1.8 Reciprocal reactions—photosynthesis and cellular respiration
	Practical activity 1.1.2 Paramount pathways—photosynthesis and cellular respiration
	Worksheet 1.1.9 Literacy review—language to learn from Worksheet 1.1.10 Thinking about my learning
	Topic 1 review

Key knowledge

Cell structure

CELL THEORY

The **cell theory** is an important theory in the field of biology. The cell theory states that:

- · all organisms are made up of cells
- new cells are produced from existing cells (biogenesis)
- the cell is the smallest organisational unit of a living thing.

PROKARYOTIC AND EUKARYOTIC CELLS

Prokaryotic cells are relatively small and less complex than eukaryotic cells. They are unicellular and do not have membrane-bound structures. This means they lack sophisticated internal detail. Bacterial cell walls are typically composed of a carbohydrate—protein material called peptidoglycan (also known as murein).

Although prokaryotic cells lack membrane-bound structures, they are capable of controlling their functions. They can also generate energy. Some can even photosynthesise because they contain photosynthetic pigments.

Prokaryotic cells have a single, coiled chromosome that contains all the DNA (genes) necessary to control and direct all the activities of the cell. There are also specialised regions within prokaryotic cells where cellular respiration can occur.

Prokaryotes are represented by two domains: Bacteria (bacteria and blue-green algae) and Archaea (which includes extremophiles).

Eukaryotic cells are larger and more complex than prokaryotic cells. They have membrane-bound organelles such as a nucleus, mitochondria and lysosomes.

Eukaryotic organisms (domain Eukarya) include the kingdoms:

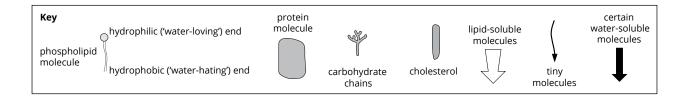
- Protista—unicellular organisms
- Fungi
- Plantae
- Animalia.

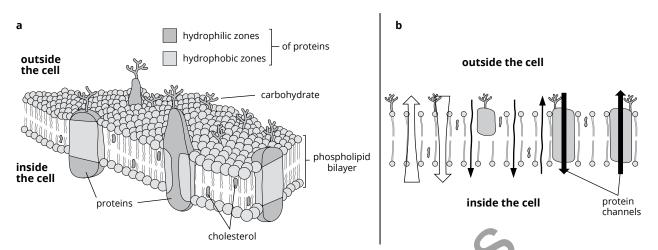
Cell function

MOVEMENT OF MATERIALS IN AND OUT OF CELLS

The **internal environment** of cells is the intracellular fluid—the medium inside cells. The **external environment** of cells is the extracellular fluid—the watery medium surrounding cells.

Cell membrane


The cell membrane (also known as the plasma membrane) controls the entry and exit of substances into and out of cells. It controls which substances leave and enter, when and how much. It responds to instructions from the nucleus. It can detect and respond to external stimuli.


The cell membrane is described as being **semipermeable** (also called partially permeable) because it is permeable to some substances but not others.

The composition of the cell membrane is basically the same as that of all membranes within cells (including the membranes of the nuclear envelope, mitochondria, Golgi apparatus, endoplasmic reticulum, vacuoles, lysosomes and chloroplasts).

The cell membrane consists of a double layer of special lipid molecules called **phospholipids**. This is called the phospholipid bilayer. The bilayer has **protein** and cholesterol molecules scattered through it in a random arrangement. The total structure is fluid. This means that the molecules can move around relative to each other. The structure of the cell membrane is commonly described using the fluid mosaic model.

Carbohydrate molecules linked to membrane proteins are called **glycoproteins**. Carbohydrate molecules associated with membrane lipids are called **glycolipids**. These molecules have various roles, including recognition and regulation.

FIGURE 1.1.1 (a) Biological membranes are composed of a phospholipid bilayer with large protein molecules embedded in the bilayer. (b) These proteins provide channels for the passive and active movement of certain molecules across the cell membrane.

In summary, the cell membrane is a flexible, semipermeable barrier between the intracellular and extracellular environments (Figure 1.1.1).

Movement across the cell membrane

Cells maintain relatively stable internal conditions by regulating the passage of materials across cell membranes. The exchange of materials between cells and their external environment occurs through the processes of:

- · diffusion
- osmosis
- · facilitated diffusion
- · active transport.

The process by which substances move across the cell membrane depends on several factors—these include the lipid nature of the cell membrane and the size and polarity of molecules. **Hydrophilic** substances dissolve in water and do not readily pass across phospholipid membranes. **Hydrophobic** substances do not readily dissolve in water—such molecules can dissolve in the phospholipid membrane.

- Lipid-soluble molecules (non-polar), such as chloroform and alcohols, dissolve in the lipid bilayer and pass through.
- Water-soluble molecules tend to be repelled by the phospholipid bilayer. However, very small molecules such as water and urea are small enough to pass directly between the phospholipid molecules.

Table 1.1.1 shows the factors that influence how materials move across the cell membrane.

Other small uncharged molecules, such as oxygen and carbon dioxide, also pass directly across the cell membrane between the phospholipid molecules.

Large water-soluble molecules (polar) such as simple sugars and amino acids cannot pass directly across

the hydrophobic cell membrane. The passage of these molecules depends on transport channels that span the cell membrane or on a process called **endocytosis**. Endocytosis occurs when a section of the cell membrane wraps around a substance for import into the cell, pinching off to form a vesicle inside the cytoplasm. **Phagocytosis** is a form of endocytosis. **Pinocytosis** refers to a similar process related to the import of liquid droplets. **Exocytosis** is the opposite of endocytosis and involves vesicles, such as those associated with the Golgi apparatus, merging with the cell membrane to facilitate the export of substances.

Surface area to volume ratio

When substances enter or leave cells, the rate at which they move is determined by a number of factors. These include:

- concentration (a steep concentration gradient causes faster diffusion)
- temperature (higher temperatures increase the rate of movement of molecules)
- surface area to volume ratio (SA:V).

Consider the two cells in Figure 1.1.2. Although cell A has a larger volume, cell B has a larger SA: V. This means it will be more efficient at taking in and exporting substances through its cell membrane per unit time.

Cell size is limited by their SA: V, because it affects a cell's ability to efficiently undergo exchange of nutrients and wastes.

In general, SA:V decreases as the size of the organism increases. Cells and organisms have structural adaptations to overcome this. Such adaptations include microvilli on absorptive cells, and the ribbon-like body shape of tapeworms.

TABLE 1.1.1 Movement across the cell membrane

Process	Description	Active or passive	Diagram	Example in organism		
Diffusion	Movement of particles from an area of high concentration to an area of low concentration, along a concentration gradient	Passive (does not require energy)		Oxygen enters body cells (low in O_2 because continually using O_2 in cellular respiration) from the capillaries where it is in high concentration (O_2 replenished at lungs).		
Osmosis	Special type of diffusion that involves movement of water molecules across a semipermeable membrane; water moves from an area of high concentration of free water molecules to an area of low concentration of free water molecules, i.e. low solute concentration to high solute concentration	Passive	starch molecule water molecule	Cells in the kidney medulla absorb water by osmosis due to the osmotic gradient between ion concentration in tissue fluid and the kidney tubules.		
Facilitated diffusion	Movement of particles from high to low concentration through protein channel in cell membrane	Passive	outside cell cell protein channel A A A A A A A A A A A A A A A A A A A	Small molecules such as amino acids and glucose enter cell via protein channel.		
Active transport	Movement of particles from an area of relatively low concentration to an area of high concentration, against a concentration gradient	Active (requires input of energy)	outside inside cell cell A A A A A A A A A A A A A A A A A A	Uptake of ions by root hair cells of plants and uptake of nutrients by gut epithelium cells of animals, so that concentration within cells exceeds concentration in external medium.		

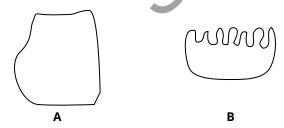


FIGURE 1.1.2 Two cells (A and B) with a different volume but similar surface area

CELL REQUIREMENTS

The cells of living organisms have similar basic requirements to ensure their survival. These include:

- water—the cytoplasm of cells is largely composed of water; cells also need a watery external environment
- oxygen—for cellular respiration (with the exception of some organisms, such as anaerobic bacteria and the Archaea)

- carbon dioxide for photosynthetic organisms
- inorganic nutrients; for example, minerals
- organic materials; for example, amino acids, fatty acids and glycerol, and carbohydrates
- a source of energy (light or chemical)
- removal of wastes.

Cells also need optimal conditions to maximise their efficiency. These conditions can be different for the cells of different kinds of organisms. For example, the cells of mammals have different temperature requirements from the cells of fish.

All cells need access to nutrients and a means to dispose of wastes. Waste materials include excess water, ions, carbon dioxide and oxygen, as well as nitrogenous substances such as urea (mammals), uric acid (birds and reptiles) and ammonia (fish). Heat is also a by-product of the metabolic activity of cells. The semipermeable membranes of cells allow for this movement of nutrients and wastes.

In general, the features of cells, including their structure, are related to their function. For example, photosynthetic plant cells contain chloroplasts, the site of photosynthesis. Cell specialisation is considered further in Topic 2 (page 51).

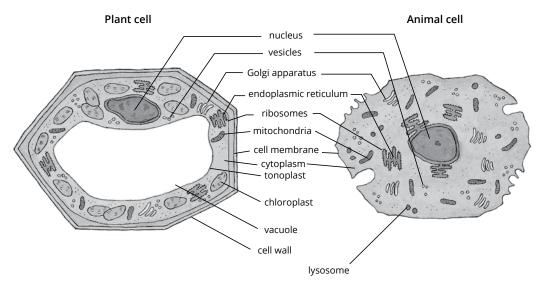
Cells are made of chemicals and require chemicals to function. The main molecule found in cells is water. Some plant cells are more than 90% water. In addition

to water, cells consist of both inorganic and organic substances.

Inorganic compounds (including water and ions) are relatively simple and do not contain hydrocarbon groups. **Organic compounds** are relatively complex and contain hydrocarbon groups.

Table 1.1.2 provides a summary of the inorganic and organic compounds that are required by cells.

TABLE 1.1.2 Inorganic and organic compounds required by cells


Substance	Examples	Function(s) in cells
Inorganic com	pounds	
Water (H ₂ O)		All chemical reactions in organisms take place in solution in water. Water has high heat capacity.
Oxygen (O ₂)		Oxygen is needed for efficient energy supply, achieved by the process of cellular respiration in almost all organisms. It is taken in as a gas by terrestrial organisms and in solution by aquatic ones.
Carbon dioxide (CO ₂)		Carbon dioxide is the main source of the carbon atoms for organic molecules, usually starting with carbon fixation by photosynthesis in autotrophs (green plant cells). CO ₂ is taken into plant leaves as a gas, is then converted to sugars and eventually returned to the atmosphere in the carbon cycle.
Minerals	Nitrogen (N) Phosphorus (P) Iron (Fe) Magnesium (Mg)	N is used for protein and nucleic acid synthesis. P is used for nucleic acid synthesis and is an important component of cell membranes. Fe is a component of haemoglobin in red blood cells. Mg is a component of chlorophyll.
Organic compo	ounds	
Carbohydrates	Basic building blocks are monosaccharides. Dissaccharides are composed of two simple sugars chemically bonded together. Polysaccharides are complex arrangements of many carbohydrate monomers chemically linked; contain C, H, O, N	Carbohydrates provide an energy source to cells that can be accessed relatively easily.
Lipids	Basic building blocks are glycerol and fatty acids; contain C, H, O	Lipids are used for long-term energy storage and insulation, and are structural components of membranes.
Proteins	Basic building blocks are amino acids; contain C, H, O, N	All enzymes are proteins. Proteins also play important structural roles.
Nucleic acids	In DNA and RNA; contain C, H, O, N, P	DNA carries the genetic code. RNA is involved in transcription and translation of the genetic code.
Vitamins	Vitamin C Vitamin D	Vitamin C prevents scurvy. Vitamin D facilitates uptake of calcium into bones. Bone vitamins have important roles in enzyme function, e.g. as coenzymes.

CELL ORGANELLES

Organelles are distinct structures within cells that perform specific functions. Some organelles are visible by light microscope; others are not. The details of many

cell organelles are only visible when using the electron microscope.

Some key organelles are summarised in Figure 1.1.3 and Table 1.1.3.

FIGURE 1.1.3 In unicellular and multicellular organisms, many of the functions that are essential to life occur within specialised structures and organelles of individual cells.

TABLE 1.1.3 Cellular organelles and their functions

7.222 2.2.0 000.0	and a spanner and a street and	
Organelle	Description and function	Found in both plants and animals
Nucleus	Large spherical organelle; controls cell activities (contains DNA)	Yes
Mitochondrion	Has a folded inner membrane, which is the site of aerobic stages of cellular respiration (contains some DNA); the folded membrane increases the surface area available for enzyme-controlled reactions, thereby maximising the benefit from chemical reactions	Yes
Ribosomes	Tiny spherical organelles; site of protein synthesis (not membrane-bound)	Yes
Endoplasmic reticulum	Network of membranes involved in protein transport within cells; endoplasmic reticulum encrusted with ribosomes is called 'rough' endoplasmic reticulum and is involved in the synthesis of proteins; 'smooth' endoplasmic reticulum synthesises lipids	Yes
Golgi apparatus	Stacks of flattened membranous sacs; modifies and packages substances in preparation for secretion from cell	Yes
Plastid	Small organelle with double membrane; synthesises and stores various organic molecules (contains DNA)	Plant cells only
Chloroplast	Site of photosynthesis (contains chlorophyll)	Plant cells only
Lysosomes	Membrane-bound organelles that produce digestive enzymes; break down complex compounds into simpler molecules; removal of waste	Animals Plants (some evidence)
Vacuoles	Membrane-bound compartments that keep a variety of substances separate from cell contents (large in plant cells, small in animal cells)	Yes
Cilia	Short and hair-like. Generally present in large numbers; rhythmic waves create movement of substances over cell surface, or movement of the cell	Yes
Flagellum	Long and hair-like. Generally singular or present in small numbers; rhythmic contractions enable movement of cell	Yes
Cell wall	Rigid structure surrounding cell; composed of cellulose in plants; limits cell expansion when fully turgid; contributes to structural support of plant	Plant cells only
Cell membrane	Semipermeable, flexible barrier; controls cell inputs and outputs	Yes

ENZYME ACTIVITY IN CELLS

The metabolism of an organism is the sum of all the chemical reactions that occur within its cells. This includes the energy-transforming reactions of cells such as production of organic molecules, and the breakdown, recycling and excretory processes. These biochemical

processes are universal—they occur in the cells of all living organisms to ensure the survival of the individual.

Enzymes are biological catalysts—they increase the rate of biochemical reactions in cells; for example, the chemical reactions involved in cellular respiration and photosynthesis.

Properties of enzymes

Enzymes:

- · are proteins
- are substrate specific—they only catalyse a chemical reaction involving a particular substrate, or reactant molecule, and not any other. This is due to an enzyme's active site, which corresponds to specific substrate molecules. Two theories are used to explain how enzymes interact with their substrates: lock and key, and induced fit (Figure 1.1.4)
- take part in chemical reactions but are not used up or changed by the process. They are released at the end of a reaction and so are available to be used over and over again
- have optimal conditions under which they work most effectively. They will catalyse a reaction so that maximum product is produced per unit of time. For example, the optimal conditions for digestive enzymes in the human duodenum is 37°C and pH 8
- are sensitive to factors such as temperature and pH. When these conditions are not optimal, the activity of enzymes is reduced. Extremes of such factors may lead to enzymes becoming **denatured**; when this happens the enzyme cannot recover its function because the shape of its active site has been permanently altered (Figure 1.1.5).

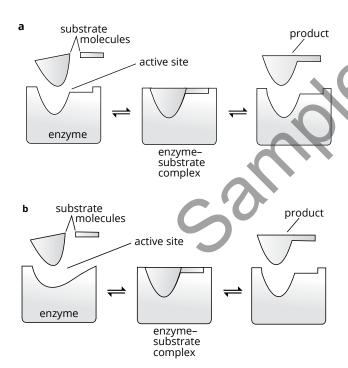
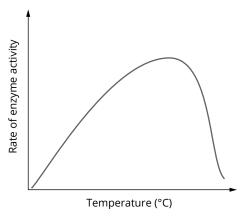



FIGURE 1.1.4 A model of enzyme (a) lock and key and (b) induced fit operation

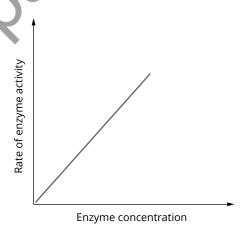


FIGURE 1.1.5 The rate of enzyme activity continues to increase with increasing temperature. Extreme temperatures denature enzymes and activity ceases.

Enzymes are often denoted by the suffix 'ase'; for example, maltase, lactase, protease, amylase and lipase.

The rate of enzyme activity also depends on the:

- concentration of substrate—the higher the concentration of the substrate, the greater the rate of interaction between substrate molecules and enzymes, leading to increased rate of reaction
- concentration of enzyme—the more enzyme available to catalyse a reaction, the more rapidly the reaction will proceed until all enzyme molecules are fully engaged in the reaction (Figure 1.1.6).

FIGURE 1.1.6 The rate of enzyme activity increases with increasing enzyme concentration.

Activation energy is the energy required to initiate a reaction; even catabolic reactions require an initial input of energy to start the reaction. Enzymes lower the activation energy, making it easier for the reaction to proceed.

Coenzymes are small organic molecules such as vitamins that are important to the normal functioning of enzymes.

Cofactors are inorganic ions, such as Mg²⁺, that are important to the normal functioning of enzymes.

Enzyme inhibition

The action of enzymes is also influenced by the presence of chemical competitors at the active site. Competitors inhibit enzyme action by binding to the active site of enzymes. This may be reversible or irreversible.

Irreversible inhibition occurs when molecules form strong, permanent bonds with the active site of enzymes. Penicillin is an irreversible enzyme inhibitor of an enzyme involved in construction of bacterial cell walls, which makes pathogenic bacteria unable to survive. Hence, penicillin is used in medicine as an antibiotic.

Reversible inhibition occurs when molecules form weak, non-permanent bonds with the active site of enzymes. Reversible enzyme inhibition has an important regulatory role in cells. Inhibitors are in place when enzymes are not required and dissociate from the enzyme when the enzyme product is needed.

ENERGY AND METABOLISM

Biochemical processes in cells

Biochemical processes (chemical reactions) occur constantly in cells. Indeed, the survival of cells relies on these chemical reactions. Collectively, these chemical reactions are called the metabolism. Metabolism can be divided up into two main types of processes:

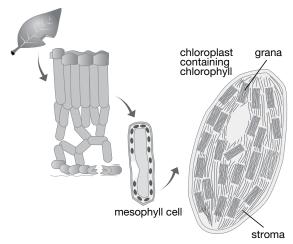
- **endergonic** processes that require a net input or use of energy
- exergonic processes that result in a net output or release of energy.

Processes in which energy is changed from one form to another are energy transformations. **Photosynthesis** and **cellular respiration** are examples of energy transformations that occur in living organisms.

- Photosynthesis is an example of an endergonic process.
- Cellular respiration is an example of an exergonic process.

Photosynthesis

Photosynthesis involves a series of enzyme-controlled reactions that occur in the chloroplasts of plant cells (Figure 1.1.7). It requires light and involves the conversion of light energy into chemical energy.


A word equation for photosynthesis is:

carbon dioxide + water
$$\xrightarrow{\text{light}}$$
 glucose + oxygen

The balanced chemical equation for photosynthesis is:

$$6\mathrm{CO}_2 + 12\mathrm{H}_2\mathrm{O} \xrightarrow{\quad \text{light} \quad } \mathrm{C}_6\mathrm{H}_{12}\mathrm{O}_6 + 6\mathrm{O}_2 + 6\mathrm{H}_2\mathrm{O}$$

Organisms that produce their own organic compounds are called **autotrophs**. Autotrophs can be photosynthetic (plants) (Figure 1.1.8) or chemosynthetic (some prokaryotes). Organisms such as fungi and animals that obtain their organic compounds from other organisms are called **heterotrophs**.

FIGURE 1.1.7 Leaves, and some stems, are green because the mesophyll cells contain many chloroplasts, the organelles in which photosynthesis takes place.

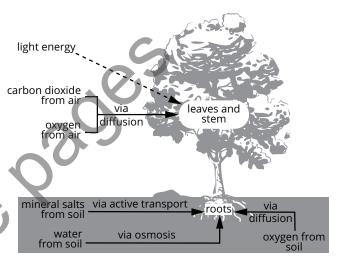


FIGURE 1.1.8 An overview of how plants obtain nutrients

Photosynthesis occurs in two stages: the **light-dependent stage** occurs in grana; the **light-independent stage** occurs in the stroma (summarised in Table 1.1.4). The products of the light-dependent stage of photosynthesis constitute the reactants required by the light-independent stage, so it must proceed first.

Factors that may limit the rate of photosynthesis include light intensity, carbon dioxide concentration and temperature. Photosynthesis and cellular respiration occur simultaneously in green plants during periods of light exposure.

TABLE 1.1.4 Overview of stages involved in photosynthesis

First stage	Second stage
Light-dependent	Light-independent
 Occurs in grana Red and blue light absorbed Light absorbed by chlorophyll Energy used to split water molecules Produces O₂ (by-product) and H⁺ ions ATP also produced (used in second stage) 	 Occurs in stroma Carbohydrate produced: in the form of glucose stored as starch H⁺ ions and CO₂ (from air) combined ATP from first stage consumed in glucose manufacture

Cellular respiration

ATP (adenosine triphosphate) is the immediate source of energy for cells. It is produced in a series of enzyme-controlled chemical reactions that involves the breakdown of organic molecules. The useable energy of ATP is contained in the phosphate bonds of the molecule. The cycling of ATP and ADP (adenosine diphosphate) means that energy continues to be available for use in the cell (Figure 1.1.9).

Cells access the energy available in organic molecules through **glycolysis** (anaerobic) and either cellular respiration (aerobic) or **fermentation** (anaerobic).

Cellular respiration is the process in which complex organic compounds are broken down to release energy (ATP). Water is a by-product.

A word equation for aerobic cellular respiration is: $glucose + oxygen \rightarrow carbon dioxide + water + energy$

A balanced chemical equation for cellular respiration is:

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy (36-38 ATP)$

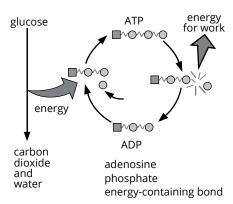


FIGURE 1.1.9 The ATP-ADP cycle

The process of cellular respiration typically occurs by three biochemical pathways: glycolysis (the splitting of glucose molecules), which occurs in the cytoplasm, the Krebs cycle and the electron transfer chain, both of which occur in the mitochondria (Figure 1.1.10).

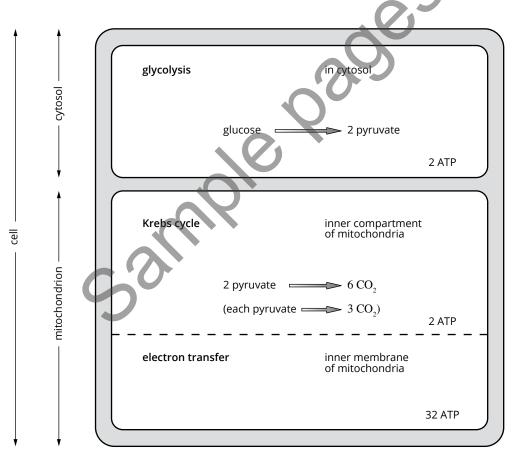


FIGURE 1.1.10 The stages of cellular respiration and associated ATP production

Anaerobic respiration

If oxygen is not available to meet the cell's energy requirements, **anaerobic respiration** (fermentation) occurs. Different cells produce different products. Lactic acid is produced in animal cells. Ethanol and carbon

dioxide are produced in plant and yeast cells. Less ATP is produced during anaerobic respiration. (A lot of energy is still bound up in the end products.) Anaerobic respiration is less efficient than **aerobic respiration**.

Knowledge preview—basic biology

The instructions below address foundation ideas in biology that you have studied before and on which the key ideas in this first topic are built. Follow the instructions to complete these introductory summaries. Remember to be resourceful, referring to text material or class notes as needed.

	Instruction	Response	
1	Draw and label a typical plant cell	Animal cell	Plant cell
*	to show the basic similarities and	Anniar cen	Trant cen
	differences as compared to the	cytoplasm	
	typical animal cell shown.	cell membrane	
		nucleus	
2	The prefix <i>pro</i> comes from the Greek	Prokaryotic organisms have cells that are	Eukaryotic organisms
	word for 'before' and also translates	characterised by the lack of a distinct, membrane-bound nucleus.	
	as 'early' or 'primitive'. The prefix eu comes from the Greek word for	Bacteria are prokaryotic organisms.	
	'true'. The word <i>karyon</i> is Greek for		
	'nut' and is used to describe the	bacterial chromosome	
	shape of the nucleus in certain cells. Use this information to complete the	cell membrane	
	description of eukaryotic organisms	cell wall	
	and how they compare to prokaryotic		
	organisms already described. Include		
	a labelled diagram.	cytoplasm	
3	All organisms have specific	Animal requirements:	Plant requirements:
	nutritional requirements that must	oxygen (for cellular respiration)	Trant requirements.
	be met so they can survive.	• water	
	Consider the list of requirements	• carbohydrates	
	shown for animals, then recall and complete the list for typical plants.	proteins	
	complete the list for typical plants.	• lipids	
		• vitamins	
		minerals	
4	Cellular respiration and photosynthesis are biochemical	Cellular respiration	Photosynthesis
	processes that result in specific		
	energy transformations in different		
	kinds of organisms. These processes are critical to the survival of the		
	organisms in which they occur.		
	a Define each process. Identify the		
	raw materials for each and the		
	substances produced.		
	b Look carefully at the information for each process. Summarise the		
	pattern or relationship you notice		
	between these two processes.		

Poor pot plant—controlled experiments

A biology student designed and conducted the following experiment to test a hypothesis. Read the student's experimental procedure and cast a critical eye over the results obtained.

Purpose

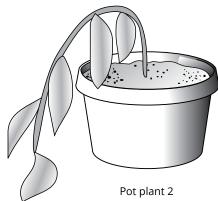
To investigate the effect of sunlight on green plants.

Hypothesis

Green plants need sunlight to survive.

Procedure

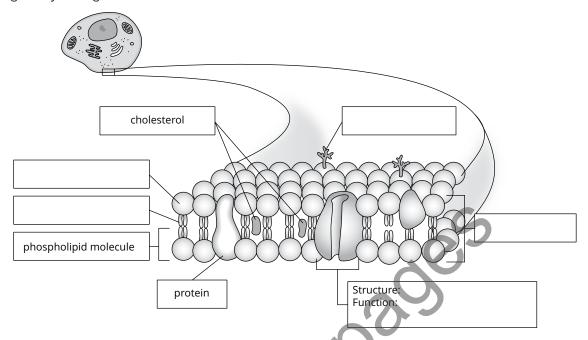
The student:


- obtained two seedlings of the same species that were the same in other respects, including size, height and weight
- labelled two same-size pots 'Pot plant 1' and 'Pot plant 2'
- potted the seedlings using a commercial potting mix, but ran out of potting mix for pot plant 2 and topped it up with some soil from the school garden
- · gave both plants 100 mL of water
- placed pot plant 1 on the windowsill with plenty of exposure to sunlight and pot plant 2 in a dark cupboard below the sill to ensure it had no access to sunlight.

The student watered pot plant 1 on the windowsill every two days for a period of two weeks but forgot about pot plant 2, which was out of sight in the cupboard. At the end of the two-week period, pot plant 1 was thriving but pot plant 2 was dead.

The student wrote the following conclusion:

Pot plant 2 was not exposed to sunlight and it died. The plant must have died due to lack of sunlight. The hypothesis that 'green plants need sunlight to survive' is supported by the results of the experiment.



- . Identify the pot plant that represented the control in this experiment. Explain your choice.
- 2 a State how many variables the student included in the experiment. Name the variables.
 - **b** Recall how many factors should be varied in an experiment. Identify the variable in this instance.

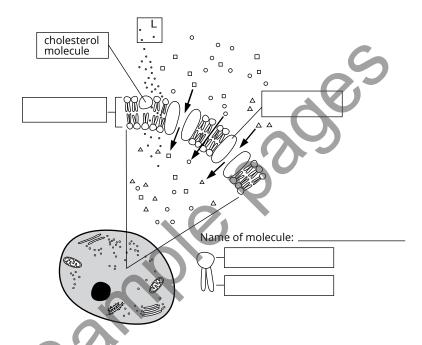
W	ORK	SHEET 1.1.2
3	Exp	plain whether the student's conclusions are accurate or not.
4	Ou	tline the conclusions that could be drawn from the student's experiment.
5	а	Describe the changes you would make to ensure this is a properly controlled experiment.
	b	Summarise the results you would expect and the conclusions you could draw in light of the changes you
	J	would make.

Model membranes—structure and function

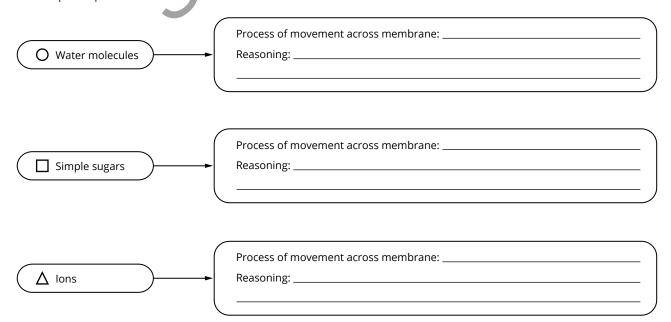
1 The composition of the cell membrane is commonly described using the fluid mosaic model. Complete the diagram by adding labels and functions where indicated.

2	Recognise the	features of cell	membranes	that have	led to	their	description as	'fluid mosaic'.
---	---------------	------------------	-----------	-----------	--------	-------	----------------	-----------------

2	Describe the	rale of th	e following	molecules	in cell membranes


- a Cholesterol
- **b** Carbohydrate _____
- Explain the link between the terms 'hydrophilic' and 'hydrophobic' in relation to the orientation of phospholipid molecules in cell membranes.

RATE MY LEARNING	I get it.I can apply/teach it.	I get it.I can show I get it.	I almost get it.I might need help.	I get some of it.I need help.	I don't get it.I need lots of help.


Selective cells—cell membranes and selectivity

Cell membranes act as the 'border guards' of cells, selectively determining which molecules enter and leave. As a result, cell membranes are described as selectively permeable or semipermeable. The uptake of molecules by cells depends on several factors, including the concentration of those molecules on either side of the cell membrane. The route taken by different kinds of molecules as they enter and leave cells depends on the type of molecule and whether it is soluble in the phospholipid bilayer of the membrane. Some very small molecules cross the cell membrane by passing between the lipid molecules within the membrane. Larger water-soluble molecules make their way through protein channels embedded across the phospholipid bilayer. Other molecules are actively taken up by cells through the protein channels against a concentration gradient. Others simply dissolve into the lipid of the cell membrane to enter cells.

Look carefully at the illustration of the cell membrane and the different kinds of molecules represented, as well as their respective concentrations inside and outside of the cell.

1 Decide on the process by which each substance enters the cell, giving reasons for your choice. Write your answers in the spaces provided.

WORKSHEET 1.1.4				
2	Мо	lecule L enters the cell by dissolving into the lipid bilayer.		
	а	Describe the kinds of molecules represented by L.		
	b	Name two different kinds of molecules that enter or leave cells in this way.		
3		e cell membrane is composed of different kinds of molecules. Recall and label the various parts of the cell mbrane indicated, providing information as directed.		
4	a	Compare and contrast the processes of diffusion and osmosis.		
	b	Compare and contrast the processes of facilitated diffusion and active transport.		

PRACTICAL ACTIVITY 1.1.1

Partially permeable membranes—diffusion and osmosis

Suggested duration: Part A—50 minutes

Part B-50 minutes

Research and planning

AIM

To investigate the movement of particles in solution across a semipermeable membrane.

RATIONALE

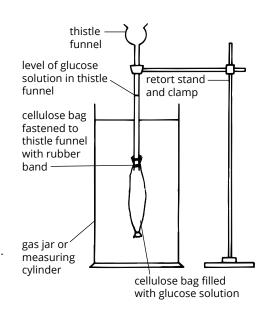
In this activity, you will use a simulation to investigate factors that influence the movement of particles across partially permeable (semipermeable) membranes. Dialysis tubing is used to represent cell membranes. The following simple tests will assist you in determining the presence of particles inside and outside of the tubing during the experiment, and therefore to make inferences about the movement of particles and the properties of semipermeable membranes.

To test for the presence of starch, add a few drops of iodine–potassium iodide solution to the test solution. If starch is present, the solution will change to a blue-black colour.

To test for the presence of glucose, dip a Clinistix[™] into the test solution. If glucose is present, the Clinistix will change from pink to purple.

MATERIALS

- · dialysis tubing
- iodine-potassium iodide
- Clinistix
- <u>◆</u> 5% starch solution
- glucose solution
- thistle funnel
- · 2 gas jars
- retort stand and clamp
- · test-tubes
- · test-tube rack
- rubber bands
- 50 mL beaker

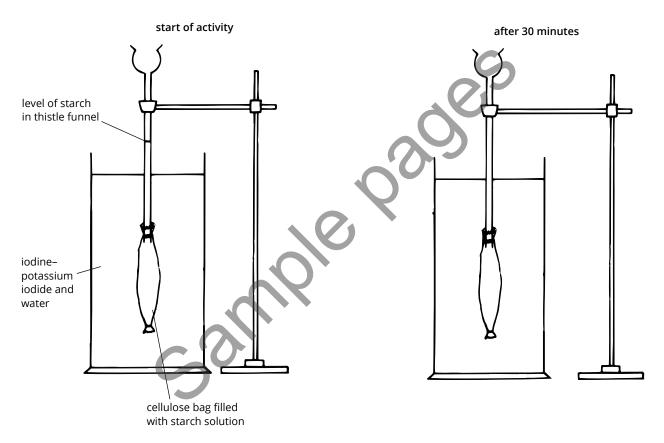


Part A Presenting partial permeability

METHOD

- Pour glucose solution into a 50 mL beaker to a depth of about 1 cm. Dip in the coloured tab of a Clinistix. Describe your observations in question 1.
- 2 Fill a gas jar with water until it is about three-quarters full. Test the water in the same way with a new Clinistix. Note your result in question 2.
- **3** Set up the equipment as shown.

Set up the retort stand to support the thistle funnel first. Then secure the dialysis tubing. Moistening the dialysis tubing will help to open the ends. Tie one end firmly closed with a rubber band. Tie the other end so that it is securely fastened to the thistle funnel. Gently pour glucose solution into the thistle funnel until the level rises about 2 cm up the stem of the funnel. Place the gas jar beneath the thistle funnel. Use the clamp to lower the dialysis tubing completely into the water solution. Leave the set-up undisturbed for 30 minutes (longer if possible). Answer question 3.


PRACTICAL ACTIVITY 1.1.1							
Re	esu	ılts and analysis					
1	De	Describe your observations after step 1 of the procedure for the Clinistix dipped in the glucose solution.					
2	a	Note the result from step 2 of the procedure. Describe the Clinistix colour for the water in the gas jar.					
	b	Explain why you have tested the water in the gas jar with the Clinistix.					
3	а	Describe your observations for the Clinistix in the gas jar solution after 30 minutes.					
	b	Explain what has happened.					
Pa	art ROC	B Modelling osmosis CEDURE					

- Pour starch solution into a test-tube to a depth of about 1 cm. Add a few drops of iodine–potassium iodide solution. Describe any colour change that occurs in question 1.
- 2 Fill the second gas jar with water until it is about three-quarters full. Add several drops of iodine–potassium iodide solution. Answer question 2.
- Prepare the set-up in the same way as you did for Part A, except that this time you will pour starch solution into the thistle funnel/dialysis tubing. Place the gas jar beneath the thistle funnel. Lower the dialysis tubing completely into the water and iodine–potassium iodide solution. Leave the set-up undisturbed for 30 minutes (longer if possible).

PRACTICAL ACTIVITY 1.1.1

Results and analysis

- 1 Describe any colour change that occurs when iodine is added to the starch.
- 2 a Describe the colour of the solution in the gas jar.
 - **b** Outline what the colour of the solution indicates about the presence of starch.
- 3 Use coloured pencils to colour and label the figures to reflect your observations at the start of the activity and again after 30 minutes.

- 4 Describe any changes you observe.
- **5** Account for the colour changes you have observed. Where did the molecules of water, iodine–potassium iodide and starch begin and where did they move to?

PR	AC'	FICAL ACTIVITY 1.1.1				
In	ter	preting and communicating				
C	ONC	CLUSIONS				
		activity, you considered evidence that indicates some kinds of molecules move across semipermeable ranes while others do not.				
1	Wr	te the definitions for:				
	а	osmosis				
	b	diffusion				
		<u></u>				
		.0,				
2	Evi	plain why certain molecules pass through semipermeable membranes while others do not. Use specific				
_		imples.				
E١	/AL	UATION				
3	а	Describe two limitations encountered during this investigation and outline how each may have impacted on the experiment.				
	b	Suggest improvements to reduce or eliminate these limitations in subsequent experiments.				

MANDATORY PRACTICAL 1

Shaping up—surface area to volume ratio and diffusion

Suggested duration: 50 minutes

Research and planning

INTRODUCTION

Sea lettuce (*Ulva lactuca*) is a green marine alga that looks like lettuce. It grows abundantly on sheltered rocky coasts. Its structure is very simple—it consists of just two layers of cells. When the algae is submerged in water at high tide, raw materials enter the cells directly, and wastes leave the cells and diffuse into the surrounding water.

If a small piece of raw liver is put on the bottom of a freshwater pond, it will soon attract a number of small khaki-grey planarians, commonly called flatworms. Like *Ulva*, these worms are very thin and flat. They have few internal organs. Gas exchange occurs directly across the body surface.

Both of these aquatic organisms depend on their shape to obtain requirements and remove wastes efficiently. Very few terrestrial organisms have this 'flattened' appearance (see figure at right).

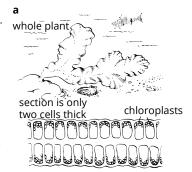
ΔΙΜ

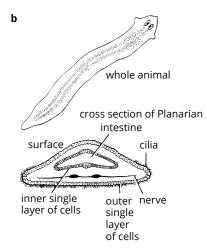
To investigate the relationship between the surface area to volume ratio and the diffusion rates of materials.

RATIONALE

In this activity, you will use a simulation to investigate the effect of surface area to volume ratio on the diffusion of substances and consider the importance of this on the efficient exchange of materials for organisms. The shapes of organisms will be simulated by blocks of agar jelly. The jelly is a pink colour due to the presence of sodium hydroxide (an alkali) and phenolphthalein indicator. Phenolphthalein is colourless in acid. When the blocks are placed in an acid solution, the acid diffuses into the jelly, causing a colour change from pink to clear. The time taken for a block to totally decolourise is a measure of the rate of diffusion of acid into the jelly.

METHOD


- Put on the disposable gloves, then accurately measure and cut a 20 mm×20 mm block of jelly from each of the sheets provided, i.e. 20 mm, 10 mm and 5 mm thick sheets.
- 2 Half-fill a 250 mL beaker with sulfuric acid from the class stock.
- **3** Add the blocks of jelly to the acid. Watch until the first block becomes completely clear. In the results table, write '1st' in red pen in the top of the column for the block that became clear first.
- 4 Immediately remove all of the blocks from the acid, using the spoon. Quickly pat the blocks dry with paper towel. Cut them in half with the scalpel and measure, in mm, the depth of the clear layer in each block. Record the depth of the clear layer in each block; that is, the depth to which the acid has penetrated each block.
- **5** Dispose of the acid and the jelly blocks as directed by your teacher.


MATERIALS

- prepared sheets of agar– phenolphthalein jelly
 - 20 mm thick
 - 10 mm thick
- 5 mm thick
- 0.1 M sulfuric acid (class supply)
- 250 mL beaker
- plastic teaspoonscalpel
- · clear plastic ruler
- tile or large petri dish lid
- · strip of paper towel
- disposable gloves
- calculator

(a) Sea lettuce (*Ulva lactuca*) and (b) a planarian, commonly called a flatworm

MANDATORY PRACTICAL 1

Results

- **1** a Identify the independent variable in this experiment.
 - **b** Identify the dependent variable in this experiment.
- 2 a Calculate the surface area for each block of jelly and enter the data into the table.
 - **b** Calculate the volume of each block. Enter the data into the table.
 - c Use a calculator to find the surface area to volume ratio for each of the blocks. Enter the data into the table.

Block number	1	2	3
Block dimensions (cm)	2 × 2 × 2	2 × 2 × 1	2 × 2 × 0.5
Diagram		5	
Depth of clear layer of block (mm)			
Surface area (SA, cm ²)			
Volume (V, cm ³)		X	
Surface area to volume ratio (SA:V)	:1	: 1	: 1

Analysis

- **3** Explain what has caused the blocks to become clear. Include a discussion of both substances and processes.
- 4 a Identify the first block to become completely clear.
 - **b** From your observations of the other two blocks, predict which would be the next to become clear. Explain why you think so.
- 5 a Name the block that has the largest surface area (SA).
 - **b** Name the block that has the largest volume (V).
 - **c** Name the block that has the largest surface area in proportion to its volume (i.e. surface area to volume ratio or SA:V).

M/	AND	ATORY PRACTICAL 1
6	De	scribe what happens to the SA:V ratio of a block as its size gets smaller.
		preting and communicating
7		scribe the relationship between the size and shape of a block and the rate at which acid diffuses into it.
8 F\		en that cells need to obtain all the materials required for life from the surrounding environment and remove stes to the surrounding environment, suggest why cells are usually microscopic in size.
	/AL	UATION
9	а	Describe two limitations encountered during this investigation and outline how each may have impacted on the experiment.
	b	Suggest improvements to the method that would help to reduce or eliminate these limitations next time.