(1:01) Numbers Above One Million

Two hundred and thirty-seven million six hundred and forty-nine thousand one hundred and five.
(1) Use numerals to write:
a forty-nine million seven hundred and sixty thousand six hundred and twenty-one
b eighty-three million one hundred and thirty-two thousand five hundred and forty-nine
(2) Write the value for each coloured digit.
a 37468901
d 96347607 \square b 23674768
e 67911213

c 43169235
f 165273406 \square
(3) Arrange each group of numbers in ascendingorder.
a 26349721
62419637
3296714
b 65375670
63497624
56811769
c 32693475
41623912
17634658

(4) Is each number beloweloser to 30000000 or 40000000 ?
a 32645762 \square b 34177624 \square c 36396408 \square

(5) a Use the digits 1, 2, 3, 4, $5,6,7$. Write one digit in each space so that all the lines add up to the same sum.

b Use the digits 1, 2, 3, 4, 5,6 . Write one digit in each space so that the sum of the numbers along each side is the same.

c Use the digits 1, 2, 3, 4, $6,7,8,9$. Write one digit in each space so that the sum of the numbers along each side is the same.

1:02 Square Numbers

(1) Draw a square on each coloured side.

Area of blue square
$=\square$ small squares
b

Area of red square
$=\square$ small squares

C

Area of orange square $=\square$ small squares
d

Area of brown square
$=\square$ small squares

Area of purple square small squares
Area of green square
$=\square$ small squares

The result of multiplying a number by itself is called a

(2) a Here we have 3 rows of 3 counters. $3 \times 3=\square$
b What shape does this array look like?

c Make square arrays using 4, 9, 16 and 25 counters.
(3) List all of the square numbers up to 100 .
\square
(4) Use place-value blocks or a calculator to find at least seven more square numbers.
\square
(5) Explain why the numbers $1,4,9,16, \ldots$ are called square numbers.

(1:03) Square Numbers

(2) Look carefully at the first ten square numbers below.
14.4 \square
\square 49 \square 64
b Write down the next two square numbers after 100. \square
\square

c Write down the square numbers from those above that are also even.

(3) Complete:

a $9=\square$ squared	b $25=\square$ squared
c $16=\square$ squared	d $36=\square$ squared

(4) Use blocks to find all factors of:

1:04) Percentages

(1) What percentage of each square is coloured?
a

b

e
\square

f

C

d
 \square \square
(2) What percentage of each square is hot colqured in Question 1?
a

c \square
d

(3) Complete the following.

a	0.25	$\overline{100}$	\%	b	$0 \cdot 35$	$\overline{100}$	\%	c	$0 \cdot 65$	$\overline{100}$	\%
d	0.75	$\overline{100}$	\%	e	$0 \cdot 15$	$\overline{100}$	\%	f	$0 \cdot 55$	$\overline{100}$	\%
9	0.90	100	\%	h	$0 \cdot 40$	$\overline{100}$	\%	i	$0 \cdot 80$	100	\%

Percentages in the Environment

- Collect examples of percentages from newspapers and packets.
- Discuss the different ways in which percentages are used.

1:05) Percentages

(1) What percentage of each square is coloured?
a

b

c

d

e

f

\square

\square
2 What percentage of each square is not coloured inuestion 1?
a
\square

h

d
\square
h

2

(4) Draw lines to connect the equivalent numbers.

a	0.25	45%	b	0.7	55%	c	0.35	85%	d	0.3
0.5	60%		0.55	70%	0.1	90%	0.65	40%		
0.45	25%	0.8	95%	0.85	10%	0.4	30%			
	0.6	50%	0.95	80%	0.9	35%	1	100%		

1:06) Percentages

(1) Write the percentage equivalent for each common fraction.
\square
\square c $\frac{75}{100}$
h $\frac{35}{100}$ \square

$\frac{25}{100}$
$\frac{1}{10}$ \square
(2) Write the percentage equivalent for each decimal.

(3) Write the decimal equivalent for each percentage.
. 90%
h 65%
\square
e 10%
j 15% \square
4. For each square, colour and write the equivalent percentage.
a

$0 \cdot 3=\%$
b

$0 \cdot 15=$ \square
c

$\%$
f

g

$$
0.89=\%
$$

$0.46=$| $\%$ |
| ---: |

h

i

e

$0.95=$
$0 \cdot 5=$

$0.46=$
$\%$
$0.7=\%$
$0.82=\%$
$0.05=\%$

Ten thousands 10000	Thousands 1000	Hundreds 100	$\begin{gathered} \text { Tens } \\ 10 \end{gathered}$	Ones 1
$10 \times 10 \times 10 \times 10$	$10 \times 10 \times 10$	10×10	10	1
10^{4}	10^{3}	10^{2}	10^{1}	1
6	4	7	3	8

$64738=(6 \times 10000)+(4 \times 1000)+(7 \times 100)+(3 \times 10)+8$ $=\left(6 \times 10^{4}\right)+\left(4 \times 10^{3}\right)+\left(7 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+8$

(1) Write the numeral for:
a $\left(3 \times 10^{4}\right)+\left(7 \times 10^{3}\right)+\left(9 \times 10^{2}\right)+\left(5 \times 10^{1}\right)+2$
b $\left(9 \times 10^{4}\right)+\left(6 \times 10^{3}\right)+\left(8 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+1$
c $\left(6 \times 10^{4}\right)+\left(2 \times 10^{3}\right)+\left(4 \times 10^{2}\right)+\left(7 \times 10^{1}\right)+5$
d $\left(8 \times 10^{4}\right)+\left(9 \times 10^{3}\right)+\left(3 \times 10^{2}\right)+\left(5 \times 10^{1}\right)+4$
(2) Write the following in expanded notation using power

a 6491
b 27245
c 78319
d 45628

(3) Write each number on the place-value chart.
a $\left(7 \times 10^{4}\right)+\left(9 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+4$
b $\left(4 \times 10^{4}\right)+\left(6 \times 10^{3}\right)+\left(7 \times 10^{2}\right)+\left(9 \times 10^{1}\right)+3$
c $\left(3 \times 10^{4}\right)+\left(5 \times 10^{3}\right)+\left(6 \times 10^{2}\right)+\left(8 \times 10^{1}\right)+6$
d $\left(8 \times 10^{4}\right)+\left(3 \times 10^{3}\right)+\left(5 \times 10^{2}\right)+\left(6 \times 10^{1}\right)+2$

Ten thousands	Thousands	Hundreds	Tens	Ones

(4) Write the numeral for:

$$
\begin{aligned}
& \text { a } 60000+4000+900+50+8 \\
& \text { b } 90000+6000+700+40+3 \\
& \text { c } 300000+70000+2000+500+90+8 \\
& \text { d } 700000+80000+5000+400+60+1 \\
& \text { e } 100000+50000+9000+300+50+6
\end{aligned}
$$

2:42 Multiplication by 2-Digit Numbers

(2) a Through air, sound traves at 330 metres each second. How far would it travel in 35 seconds? \qquad
Through sea water sound travels 4 times faster. How far does it travel through sea water in 35 seconds?
b The platform of the Assyrian palace of Sargon covered about 11 hectares and was 15 metres high. It would have taken 8600 people 14 years to construct the platform. If one person could do all this work, how long would it take them?
\square
\square

Estimating the Number of Blocks in a Jar

- Take turns to fill (or partly fill) a jar with place-value ones.
- Estimate the number of layers of ones in the jar.
- Look underneath to estimate the number in each layer.
- Multiply, to estimate the number of ones in the jar.

- See whose estimate is closest.

2:43 Number Sentences

We can use opposite operations to find a missing number.
+6 is the opposite of -6 $\times 4$ is the opposite of $\div 4$

$-16=7$
The opposite of -16 is +16 .
So $\square=7+16$
$=23$

$$
\div 3=13
$$

The opposite of
concept $\div 3$ is $\times 3$.
So $\Delta=13 \times 3$
$=39$
(1) Find the value of the missing number, then write \mathbf{T} (true) or \mathbf{F} (false).

(2) Find the value of each missing number.
a $5+\square=12-4$ So $\square=$
c $\Delta-7=6 \times 3 \quad$ So $\Delta=$
D $\quad \times 4=100-16$ so $\square=\square$
d $\Delta \div 3=15-8$ So $\Delta=\square$
e $\square-136=9 \times 7$ So $\square=$

f $\Delta \times 5=36+14$ So $\Delta=$ \square

If $=23$ is a solution
to $\square+98=121$,
then $23+98=121$.

If $\Delta=8$ is a solution
CONCEPT to $7 \times \Delta=\Delta+48$, then $7 \times 8=8+48$.
(3) Check the given solution by substituting, then write \mathbf{T} (true) or \mathbf{F} (false).
a If $\square+14=30$, then $\square=10$
c If $\Delta \times 4=420$, then $\Delta=15$
e $\square+8+10=32, \square=14$
b $16-\Delta=8+7, \Delta=1$
b If $\square-37=13$, then $\square=50$
d If $\Delta \div 7=20$, then $\Delta=140$
k $(\Delta+4) \times 3+7=22, \Delta=1$

If a number is divisible by a number, then it is also divisible by the factors of that number.
(3) If a number is:
a divisible by 30 , it is also divisible by
b divisible by 24, it is also divisible by
c divisible by 100 , it is also divisible by

2:45) Estimation with Decimals

$4 \cdot 12+84 \cdot 691 \Rightarrow$ Rounding $\longrightarrow 4+85=89 \longleftarrow-89$ is our estimate.

Both rounded up will give an overestimate.
e.g. 2.942×8.5

Rounding both up: $3 \times 9=27$
27 is an overestimate.

Both rounded down will give an underestimate.
e.g. 2.41×12.3

Rounding both down: $2 \times 12=24$ 24 is an underestimate.
(1) Round each decimal to the nearest whole number. Write whether you have rounded up (U) or rounded down (D).

\doteqdot means 'is approximately equal to'.
(2) Mary obtained these answers using a calculator. Use estimation to discover which 3 answers are incorrect. Put a cross next to the wrong answers.
a $4.186 \times 5 \cdot 1 \doteqdot 41.6$
c $2.178 \times 7.3 \doteqdot 22 \cdot 7$
e $5.512 \times 3.5 \doteqdot 19.29$
g $2.32 \times 6.1 \doteqdot 14.15$

(3) Mentally round each number to the nearest whole number, then estimate the answer.
a $29.3+8.99 \doteqdot$
c $100.65-23.4 \doteqdot \square$
e $1.863 \times 6.714 \doteqdot \square$
g $9.243+5.341 \doteqdot \square$
i $18.657-11.62 \doteqdot \square$
b $30.812+6.1 \doteqdot \square$
d $17.3-7.012 \doteqdot \square$
f $2.375 \times 3.41 \doteqdot \square$
h $8.66 \times 4.73 \doteqdot \square$
j $22.831+9.22 \doteqdot \square$
Rounding
If the next digit is 5 or more, round up. e.g. $7 \cdot 514 \Rightarrow 8$.

If the next digit is 4 or less, round down. e.g. $13.49 \Rightarrow 13$.

Use a calculator to check the answers to Questions 2 and 3.

Check your answers on a calculator.

We can estimate answers using whole numbers to check the reasonableness of our answers.

Round

Both numbers were rounded down so this will be an underestimate.
(1) Round these numbers to the nearest whole number to estimate. Complete the written algorithms to check that your answers are reasonable.

(2) a 0.6×12 \square b 42×1.843
c $22 \times 1.2 \doteqdot \square$
d 5.3×8 \square e 28×0.482
h 100×3.31
\square
\doteqdot
\square
\square
\square
f $3.9 \times 7 \doteqdot$ \square
g 10.8×7 \square
i $7.12 \times 6 \doteqdot$ \square
(3) a $59.83 \div 3 \div \square$
b $33.812 \div 8 \div \square$
c $20.9 \div 7 \div \square$
d $8.205 \div 2 \doteqdot \square$
e $15.08 \div 5 \div \square$
f $17.938 \div 2 \div \square$
g $19.79 \div 4 \doteqdot \square$

Ask: Does the answer make sense?

