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In 1675 Isaac Newton said, “If I have seen further it is by standing on the 
shoulders of giants”. What he meant by this is that he had relied on the work 
of brilliant minds that preceded him, in particular Galileo Galilei (1564–1642). 
Newton refined Galileo’s work on motion and gravity when he published Principia 
in 1687, a work in which he outlined the connection between the force and motion 
of bodies with mass. In this chapter we will investigate the connection between 
force and energy and their effect on mass.

Key knowledge
•	 investigate and apply theoretically and practically the laws of energy and 

momentum conservation in isolated systems in one dimension  3.1, 3.6

•	 investigate and analyse theoretically and practically impulse in an isolated 
system for collisions between objects moving in a straight line: FΔt = mΔv  3.2

•	 investigate and apply theoretically and practically the concept of work done by 
a force using:

	– work done = force × displacement  3.3

	– work done = area under force vs distance graph (one dimension only)  3.3

•	 analyse transformations of energy between kinetic energy, elastic potential 
energy, gravitational potential energy and energy dissipated to the environment 
(considered as a combination of heat, sound and deformation of material):

	– kinetic energy at low speeds: Ek =
1
2
mv2; elastic and inelastic collisions with 

reference to conservation of kinetic energy  3.5

	– elastic potential energy: area under force-distance graph including ideal 

springs obeying Hooke’s Law: Es =
1
2
kx2  3.4

	– gravitational potential energy: Eg = mgΔh or from area under a force-distance 
graph and area under a field-distance graph multiplied by mass  3.5
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3.1 Conservation of momentum
Where there are moving objects, there are bound to be collisions. These can range 
from the interaction of sub-atomic particles to events on a galactic scale. Newton’s 
cradle (Figure 3.1.1) provides another example of a collision. It also provides a 
demonstration of the law of conservation of momentum, a powerful tool with 
which to analyse collisions.

THE LAW OF CONSERVATION OF MOMENTUM
The product of the mass of an object and its velocity is called its momentum, and 
is given by the following equation.

p = mv
where p is momentum (kg m s−1)
	 m is the mass of the object (kg)
	 v is the velocity of the object (m s−1)

Given that velocity is a vector quantity and momentum is calculated from 
velocity, it follows that momentum is also a vector quantity.

The law of conservation of momentum states that in any collision or 
interaction between two or more objects in an isolated system, the total momentum 
of the system will be conserved (that is, it will remain constant). The total initial 
momentum is equal to the total final momentum.

sum of the initial momentum (Σpinitial) = sum of the final momentum (Σpfinal)
where Σ is the mathematical symbol representing the addition of each factor
Hence Σpinitial is the sum of the initial momentum of each object in the system 
and Σpfinal is the sum of the final momentum of each object in the system.

Another way of putting this is that the total change in momentum of the system 
is zero. This is often found by adding up the change in momentum of all the parts 
of the system:

Σ∆p = 0
In physics, a collision refers to a situation where two objects interact and exert 

action–reaction forces on each other. They do not have to make physical contact. For 
instance, two identically charged particles could approach and repel one another, 
moving off in opposite directions without ever making physical contact. This is still 
considered a collision and the law of conservation of momentum still applies.

Note that the law refers to objects in an isolated system. For a system to be 
isolated, there are only internal forces acting between the objects, with no interaction 
with any objects outside the system. In reality, perfectly isolated systems cannot 
exist on Earth because of friction and gravity. There are, however, many situations 
where treating a system as isolated is a useful approximation.

In the rear-end collision between a car and a bus examined in Worked 
example 3.1.1 on the next page friction is relatively small compared to the forces 
exerted by the vehicles on one another. Therefore the vehicles can be treated as an 
isolated system.

FIGURE 3.1.1  Newton’s cradle is a popular 
illustration of almost perfect conservation of 
momentum. As the raised sphere collides with 
the other spheres, the sphere’s momentum is 
passed on until the final sphere continues with 
the same momentum as the original.

PHYSICSFILE

Discovering the neutrino
Conservation of momentum helped 
scientists discover the neutrino. In 
the 1920s, it was observed that in 
beta decay a nucleus emitted a beta 
particle. However, when the nucleus 
recoiled, it was not in the exact 
opposite direction to the emitted 
electron. Thus the momentum of these 
particles did not appear to comply with 
the law of conservation of momentum. 
In 1930, Wolfgang Pauli proposed 
that another particle must have also 
been emitted in order to conserve the 
total momentum of the system. This 
particle, the neutrino, was not detected 
experimentally until 1956. As you read 
this, billions of neutrinos originating 
from the Sun are passing through your 
body and the Earth.
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Worked example 3.1.1

CONSERVATION OF MOMENTUM

In a head-on collision on a demolition derby track, a car of mass 1000 kg travelling 
east at 20.0 m s−1 crashes into a mini-bus of mass 5000 kg travelling west at 
8.00 m s−1. Assume that the car and mini-bus lock together on impact and ignore 
the effect of friction.

a	 Calculate the final common velocity of the vehicles.

Thinking Working

First assign a direction that 
will be considered positive.

Note: as long as directions 
are assigned positive or 
negative consistently in the 
same problem, it does not 
matter which direction is 
assigned positive.

In this case we will consider vectors directed 
eastwards to be positive.
mc =1000 kg

uc = 20.0 m s−1

mb = 5000 kg

ub = −8.00 m s−1

Apply the law of conservation 
of momentum.

Σpinitial = Σpfinal

mcuc +mbub = (mc +mb)v

(1000)(20.0) + (5000)(−8.00) = (1000 +5000)v
(−20000) = (6000)v

v = (−20000)
(6000)

= −3.33333

= 3.33ms−1 west

b	 Calculate the change in momentum of the car.

Thinking Working

The change in momentum of 
the car is its final momentum 
minus its initial momentum.

Δpc = pfinal − pinitial

= mc(v − u)

=1000(−3.33333 − 20.0)

= −23333.3

= 2.33 ×104  kgms−1 west

c	 Calculate the change in momentum of the bus.

Thinking Working

The change in momentum of 
the bus is its final momentum 
minus its initial momentum.

Δpb = pfinal − pinitial

= mb(v − u)

= 5000(−3.33333 − (−8.00))

= 23333.3

= 2.33 ×104  kgms−1 east

d	 Verify that the momentum of the system is constant.

Thinking Working

The total change in the 
momentum of a system is 
the vector sum of the change 
of momentum of its parts. 
This should be zero from the 
conservation of momentum.

Δpc + Δpb = (−2.33 ×104) + (2.33 ×104) = 0

Therefore the momentum of the system is 
constant (i.e. conserved) as expected.
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Worked example: Try yourself 3.1.1

CONSERVATION OF MOMENTUM

In a safety-rating test of head-on collisions, a car of mass 1200 kg travelling east 
at 22.0 m s−1 crashes into a bus of mass 7000 kg travelling west at 15.0 m s−1. In 
answering the following questions, assume that the car and bus lock together on 
impact. You can ignore the effect of friction. 

a	 Calculate the final common velocity of the vehicles.

b	 Calculate the change in momentum of the car.

c	 Calculate the change in momentum of the bus.

d	 Verify that the momentum of the system is constant.

CONSERVATION OF MOMENTUM FROM NEWTON’S LAWS
The principle of conservation of momentum follows directly from Newton’s second 
and third laws. This can be shown in the following way.

Consider a bowling ball of mass mb moving with an initial velocity of ub. It 
collides with a stationary pin of mass mp. The velocity of both the ball and pin 
changes. The pin’s final velocity is represented by vp in Figure 3.1.2.

When the ball and pin collide, they exert action–reaction forces on each other 
and, according to Newton’s third law:

Fbp = −Fpb

The forces cause the ball to decelerate and the pin to accelerate. Thus from 
Newton’s second law (F = ma):

mbab = −mpap

The ball and pin are in contact for time ∆t. Thus we can rewrite acceleration in 
terms of velocity:

mb

(vb − ub )
Δt

= −mp

(vp − up )

Δt
The times are the same and so they cancel out, leaving:

mb(vb − ub) = −mp(vp − up)
Expanding and rearranging gives:

mbub + mpup = mbvb + mpvp

The left-hand side of this equation describes the initial momentum of the 
system and the right-hand side represents the final momentum of the system. Thus 
an application of Newton’s second and third laws has produced the equation for 
the conservation of momentum:

Fb Fp

vpvbub

up = 0

Fb Fp

vpvbub

up = 0

Fb Fp

vpvbub

up = 0

FIGURE 3.1.2  When a bowling ball collides with a pin, they exert equal but opposite forces on each other. These forces cause the ball to lose some 
momentum and the pin to gain an equal amount of momentum.
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Worked example 3.1.2

REBOUNDING

In a football game, a player A of mass 80.0 kg travelling towards the goal at 
9.00 m s−1 collides with an opposition player (player B) of mass 72.0 kg travelling 
away from the goal at 6.50 m s−1. After the collision, player A is travelling towards 
the goal at 0.50 m s−1. Assume that the two players rebound off each other on 
impact and ignore the effects of friction.

a	 Calculate the sum of the momentum of the two players before the collision.

Thinking Working

First assign a direction that will be 
considered positive.

In this case we will consider vectors 
directed towards the goals to be 
positive.

mA = 80.0 kg

uA = 9.00 m s−1

vA = 0.50 m s−1

mB = 72.0 kg

uB = −6.50 m s−1

Use the equation of momentum for 
each player and substitute the values.

Σpinitial = pA + pB

= mAuA +mBuB

= (80.0)(9.00) + (72.0)(−6.50)

= (720) + (−468)

= 252 kg m s−1 towards the goal

b	 Calculate the final velocity of the opposition player (player B).

Thinking Working

The sum of the momentum after the 
collision is equal to the sum of the 
momentum before the collision.

Σpinitial = Σpfinal

Σpinitial = mAvA +mBvB
252 = (80.0)(0.50) + (72.0)vB

vB = 252 − 40.0
72.0

= 2.94444 m s−1 towards the goal

c	 Calculate the change in momentum of player A.

Thinking Working

The change in momentum of player A 
is their final momentum minus their 
initial momentum.

ΔpA = pfinal − pinitial

= mA (vA − uA )

= (80.0)(0.50 − 9.00)

= −680 kg m s−1

= 680 kg m s−1 away from the goal

d	 Calculate the change in momentum of player B.

Thinking Working

The change in momentum of player B 
is their final momentum minus their 
initial momentum.

ΔpB = pfinal = pinitial

= mB(vB − uB)

= (72.0)(2.94444 − (−6.50))

= 680 kg m s−1 towards the goal
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Worked example: Try yourself 3.1.2

REBOUNDING

In a child’s toy, a blue marble rolls along a track and collides with a red marble 
rolling the other way. The blue marble has a mass of 0.00 320 kg and is travelling 
south at 0.800 m s−1 as it hits the red marble. The red marble has a mass of 
0.00 150 kg and is travelling north at 1.00 m s−1 when it hits the blue marble. After 
the collision the blue marble is now travelling towards the south at 0.450 m s−1. In 
answering the following questions, assume that the two marbles bounce off each 
other on impact. You can ignore the effect of friction. 

a	 Calculate the sum of the momentum of the two marbles before they hit.

b	 Calculate the final velocity of the red marble.

c	 Calculate the change in momentum of the blue marble.

d	 Calculate the change in momentum of the red marble.

Worked example 3.1.3

EXPLOSIVE MOMENTUM

Two friends are standing on their stationary skateboards facing each other with 
their hands gripped together. They place their feet together and push with their 
legs as they release their hands. After releasing their grip, skater A, of mass 50.0 kg, 
travels towards the east at 3.50 m s−1. Skater B, of mass 34.0 kg, travels in the 
opposite direction. You can ignore the effect of friction. 

a	 Calculate the sum of the momentum of the two skaters before they release 
their grip.

Thinking Working

Assign a direction that will be 
considered positive.

In this case we will consider vectors 
directed towards the east to be 
positive.

mA = 50.0 kg

uA = 0

vA = 3.50 m s−1

mB = 34.0 kg

uB = 0 m s−1

Use the equation of momentum for 
the combined mass of the skaters.

Σpinitial = pA + pB

= (mA +mB)u

= (50.0 + 34.0)(0)

= (84.0)(0)

= 0 kg m s−1

b	 Calculate the final velocity of skater B.

Thinking Working

The sum of the momentum after the 
skaters release their grip is equal to 
the sum of the momentum before the 
release.

Σpinitial = Σpfinal

Σpinitial = mAvA +mBvB

(0) = (50.0)(3.50) + (34.0)vB

(34.0)vB = (−175)

vB = −5.14706

= 5.15 m s−1 west
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c	 Calculate the change in momentum of skater A.

Thinking Working

The change in momentum of skater A 
is their final momentum minus their 
initial momentum.

ΔpA = pfinal − pinitial

= mA (vA − uA )

= (50.0)(3.50 − 0)

=175

=175 kg m s−1 east

d	 Calculate the change in momentum of skater B.

Thinking Working

The change in momentum of skater B 
is their final momentum minus their 
initial momentum.

ΔpB = pfinal − pinitial

= mB(vB − uB)

= (34.0)(−5.14706 − 0)

= −175

=175 kg m s−1 west

Worked example: Try yourself 3.1.3

EXPLOSIVE MOMENTUM

Two ice dancers are standing still in the centre of an ice rink facing each other with 
their palms together. They then begin their routine by pushing with their hands. 
After pushing away, ice dancer A, of mass 62.0 kg, travels towards the north at 
2.20 m s−1. Ice dancer B, of mass 98.0 kg, travels towards the south. You can ignore 
the effect of friction.

a	 Calculate the sum of the momentum of the two ice dancers before they push 
away.

b	 Calculate the final velocity of the dancer B.

c	 Calculate the change in momentum of ice dancer A.

d	 Calculate the change in momentum of ice dancer B.

PHYSICSFILE

Not so strongman
Traditionally, circus strongmen would 
often perform a feat where they place a 
large rock on their chest and then invite 
another person to smash the rock with 
a sledgehammer. This might seem at 
first to be an act of extreme strength 
and daring. However, a quick analysis 
using the principle of conservation 
of momentum will show otherwise. 
Assume that the rock has a mass of 
27 kg and that a sledgehammer of 
mass 3.0 kg strikes it at 5.0 m s−1. From 
the law of conservation of momentum, 
we can show that the rock and 
sledgehammer will move together at 
just 0.50 m s−1 after impact:

m1u1 + m2u2 = (m1 + m2)v

(3.0 × 5.0) + (27 × 0) = 

(3.0 + 27) × v

15 = 30v

v = 0.50 m s−1

This is a very low speed. The large 
mass of the rock means that the final 
common speed is too low to hurt the 
strongman. A more daring feat would 
be to use the sledgehammer to smash 
a pebble.
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		 3.1 Review

•	 The momentum of an object is the product of 
its mass and its velocity: p = mv. Momentum is 
measured in kg m s−1.

•	 The total momentum of an isolated system is 
conserved, that is, the sum of the momentum of 
the parts of a system before a collision is equal 
to the sum of the momentum after the collision: 
Σpinitial = Σpfinal.

•	 In a simple collision between two objects of mass m1 
and m2, this equation becomes:

m1u1 + m2u2 = m1v1 + m2v2

•	 A collision between two objects of mass m1 and m2 
can be described as either:

	- combined, where two separate masses lock 
together on impact

	- rebound, where two separate masses bounce off 
each other and remain separate

	- explosive, where two combined masses separate, 
moving away from each other.

OA
✓ ✓ 

SUMMARY

Knowledge and understanding
1	 Using the concepts investigated in this section, explain 

why you are more likely to end up in the water when 
attempting to step onto a dock from a stand-up 
paddle board than when attempting to step onto a 
dock from a river ferry.

2	 Two toy cars have Velcro attached such that they 
will stick together on contact. A child makes the 
cars collide and both cars come to rest as they stick 
together. Explain how momentum is conserved in this 
situation.

Analysis
3	 In an experiment, a student hangs a green sphere 

(25.0 kg) from a long rope and an orange sphere 
(50.0 kg) from another long rope. Each sphere has a 
magnet attached. The spheres are pushed towards 
each other. Just before they collide, the green sphere 
is moving east at 3.50 m s−1 and the orange sphere is 
moving west at 6.00 m s−1. They collide in mid-air and 
remain locked together due to the magnets. Calculate 
the final velocity of the combined spheres.

4	 While shunting empty railway carriages, an 11.0 t 
passenger carriage travelling at 7.50 m s−1 north 
collides with a diner carriage of 16.0 t that is also 
travelling north but at 3.50 m s−1. The two carriages 
lock together after the collision. Ignoring friction, find 
their combined velocity.

5	 A sports car of mass 1000 kg travelling east at 
36.0 km h−1 approaches a station wagon of mass 
2000 kg moving west at 18.0 km h−1.
a	 i	 Calculate the momentum of the sports car.

ii	 Calculate the momentum of the station wagon.
iii	Determine the sum of the momentum of these 

vehicles.
b	 The two vehicles now collide head-on on an icy 

stretch of road where there is negligible friction. 
The vehicles remain locked together after the 
collision.
i	 Calculate the common velocity of the two 

vehicles after the collision.
ii	 Where has the initial momentum of the vehicles 

gone?
iii	Determine the change in momentum of the 

sports car.
iv	 Determine the change in momentum of the 

station wagon.

6	 A 155 g pink snooker ball travelling with initial velocity 
5.00 m s−1 to the right collides with a stationary green 
ball of mass 132 g. The two balls rebound off each 
other. If the final velocity of the pink ball is 3.00 m s−1 
to the left, calculate the velocity of the green ball after 
the collision.

KEY QUESTIONS
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		  7	 Two students at a fun fair run at each other with large 

fitness balls held in front of them. One student has 
a yellow ball and is running at 4.20 m s−1 east with a 
total mass of 71.0 kg. The other student has an orange 
ball and is running at 5.30 m s−1 west with a total mass 
of 65.0 kg. After they collide and bounce off each 
other, the final velocity of the student with the orange 
ball is 1.40 m s−1 east. Calculate the final velocity of the 
student with the yellow ball.

8	 In a training exercise a group of astronauts investigate 
what would happen in the event of a failed coupling 
of a cargo ship with the International Space Station 
(ISS). In a large hangar a model of the ISS, with a 
mass of 4.20 × 105 kg, is suspended from the ceiling 
and is stationary. A 3.20 × 104 kg model of a supply 
ship is nearby and also suspended. The model of the 
supply ship is pushed towards the model of the ISS. If 
it is moving at 5.00 m s−1 south as it strikes the model 
of the ISS and rebounds at 5.00 m s−1 north, with what 
velocity does the model of the ISS move after the 
collision?

9	 A stationary 1000 kg cannon mounted on wheels 
fires a 10.0 kg shell east with a horizontal speed 
of 505 m s−1. Assuming that friction is negligible, 
calculate the recoil velocity of the cannon.

10	 An astronaut is floating in deep space while holding 
a toolbox. The total mass of the astronaut, including 
their suit, is 235 kg and the mass of the toolbox is 
46.0 kg. The combined astronaut and toolbox are 
drifting away from the spaceship at 0.750 m s−1. 
With no other way to get back to the spaceship the 
astronaut decides to sacrifice the toolbox and throw 
it as fast as possible in a direction away from the 
spaceship. With what speed should the astronaut 
throw the toolbox if they hope to move towards the 
spaceship at 0.300 m s−1 after the throw?Hea
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3.2 Impulse
In a car crash, it is not only how fast the car travels that determines the damage, 
but how quickly it stops. This is a direct consequence of Newton’s second law of 
motion. From F = ma, if a is small you can conclude that the force required to bring 
the car to a stop will also be relatively small. On the other hand, if the car is brought 
to a halt very rapidly (Figure 3.2.1), there will be a large deceleration requiring a 
large force. The force determines the damage. Ignoring the likelihood of injury 
caused by a large force that acts for a short time, such as in a car crash, a small 
force acting for a longer time has the same effect: suddenly applying the brakes and 
gradually applying the brakes both bring the car to rest. One way to quantify the 
similarity between these situations is to describe the impulse in a collision, which 
considers both the force and the time over which the force acts.

FIGURE 3.2.1  Rapid deceleration requires a large force and often results in damage and injury.

CHANGE IN MOMENTUM
Newton’s original formulation of his second law was not expressed in terms of 
acceleration. Rather, he spoke of the ‘motion’ of a body that would be altered when 
a force acted on that body over a time interval. This is very close to saying that the 
momentum of the body changes when a resultant force acts on it. This is equivalent 
to the more familiar F = ma formulation of Newton’s second law, as will now be 
shown.

Consider a body of mass m with a resultant force F acting on it for time Δt. The 
mass will accelerate as described by Newton’s second law:

F = ma

∴F = mΔv
Δt  after substituting the definition of acceleration.

By rearranging this equation, we can write F∆t = m∆v = ∆p.
The term m∆v is the change in the momentum of the body. It is also called the 

impulse. The force involved in a collision can change in value during the collision, 
so the average force is used. The average force acting on the body for a time ∆t 
causes a change in the momentum.
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The term F∆t is called the impulse of the resultant force and is equal to the 
change in momentum of the object. That is:
impulse = F∆t = ∆p
where F is the average force acting on the object (N)
	 ∆t is the time over which the force acts (s)
	 ∆p is the change in momentum of the object (kg m s−1).
Impulse is measured in newton seconds (N s)

It is important to note that impulse is a vector quantity. Its direction is the same 
as that of the average force or of the change in momentum (or velocity).

Momentum units
Since impulse can be expressed in terms of a momentum change, the units for 
momentum (kg m s−1) and impulse (N s) must be equivalent. This can be shown 
using Newton’s second law.

Given that 1 N = 1 kg m s−2 (from F = ma), it follows that 1 N s = 1 kg m s−2 × s
That is, 1 N s = 1 kg m s−1.	
Even though the units are equivalent, they should be used with the appropriate 

quantities as a reminder of the quantity that is being considered: momentum or 
impulse. The newton second (N s) is the product of a force and a time interval and 
so should be used with impulse. The kilogram metre per second (kg m s−1) is the 
product of a mass and a velocity and so should be used with momentum. Even so, 
it is not uncommon to see newton seconds used as the unit of momentum.

Worked example 3.2.1

CALCULATING THE IMPULSE

Calculate the impulse of a tree on a 1480 kg sports car if the vehicle is travelling 
at 93.0 km h−1 in a northerly direction when the driver loses control of the vehicle 
on an icy road. The car comes to rest against the tree. 

Thinking Working 

Convert the speed to m s−1.
93.0 km h−1 = 93.0

3.6
ms−1

= 25.8333ms−1

Calculate the change in momentum.

The negative sign indicates that the 
change in momentum, and therefore 
the impulse, is in a direction opposite 
to the initial momentum (with north as 
positive).

Δp = m(v − u)

= (1480)(0 − 25.8333)

= −3.82333 ×104

= 3.82 ×104  N s south

The impulse is equal to the change in 
momentum.

Impulse = 3.82 ×104 N s south

Worked example: Try yourself 3.2.1

CALCULATING THE IMPULSE 

Calculate the impulse of the braking system on the 1480 kg sports car if the 
vehicle was travelling at 95.5 km h−1 in a north-easterly direction before coming 
to an abrupt halt. 
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FORCE VERSUS TIME GRAPHS
In many situations the force applied to an object is not constant. For example, when 
a tennis player hits a ball, the initial force exerted by the racquet is relatively small. 
As the strings stretch and the ball deforms, this force builds up to a maximum 
before decreasing again as the ball rebounds from the racquet. Where the force 
changes over time, the relationship can be represented graphically (Figure 3.2.2).

The impulse of the ball, or the change in momentum, can be found from the 
product F∆t. This is simply the area under the force vs time graph.

Worked example 3.2.2

IMPULSE OF RUNNING SHOES 

A running-shoe company plots the following force vs time graph for a running 
shoe. Use the data to calculate the magnitude of the impulse.
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Thinking Working 

Recall that impulse = F∆t.

This is the area under the force vs time 
graph.

impulse = 1
2
×base × height

= 1
2
×160 ×10−3 × 2 ×103

=160 N s

Worked example: Try yourself 3.2.2

IMPULSE OF RUNNING SHOES 

A running-shoe company plots the following force vs time graph for an 
alternative design intended to reduce the peak force on the heel. Calculate the 
magnitude of the impulse.
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APPLICATIONS OF IMPULSE
The connection between impulse, force and collision duration is useful in analysing 
collisions. When a vehicle collides with another object and comes to rest, the vehicle 
and occupants undergo a rapid deceleration. The impulse depends on the initial 
speed of the vehicle and on its mass.

Since impulse = ∆p = F∆t, a large force is exerted to bring the vehicle to rest in 
a very short time. Extending the time taken for a vehicle to stop reduces the force 
exerted. Examples of increased stopping times in different activities are shown in 
Figure 3.2.3 on page 121.

t (s)
0 0.150.120.090.060.03

Impulse = Fave × ∆t
 = area under graph

F 
(N

)

FIGURE 3.2.2   The force changes with time as 
the racquet strikes the ball.
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Worked example 3.2.3

BRAKING FORCE

A 2520 kg truck is travelling at 30.0 m s−1 before the brakes are applied. 
Calculate the magnitude of the average force exerted by the brakes to bring the 
vehicle to rest in 12.0 s.

Thinking Working

Calculate the change in momentum.

The negative sign indicates that the 
change in momentum, and therefore 
the braking force, is in the direction 
opposite to the initial momentum.

Δp = m(v − u)

= 2520(0 − 30.0)

= −75600

= −7.56 ×104 kgms−1

Transpose ∆p = F∆t to find the force. 
The sign of the momentum can be 
ignored, since you are only finding the 
magnitude of the average force.

F = Δp
Δt

= 75600
12.0

= 6.30 ×103N

Worked example: Try yourself 3.2.3

BRAKING FORCE

The same 2520 kg truck travelling at 30.0 m s−1 needs to stop in 1.50 s because 
a vehicle in front has suddenly stopped. Calculate the magnitude of the average 
braking force required to stop the truck in that time. 

FIGURE 3.2.3  (a) The landing mat extends the time over which the athlete comes to rest, reducing 
the size of the stopping force. If the high jumper missed the mat and landed on the ground, the force 
would be larger, but their momentum change would be the same. (b) Thick padding around the goal 
post extends the time over which a player who collides with it comes to rest, thereby reducing the 
size of the stopping force. (c) Wicketkeepers follow the ball’s final trajectory with their gloves when 
keeping. This extends the ball’s stopping time, reduces the stopping force and softens the blow on 
the gloves.

(a) (b) (c)
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Safety features in cars—such as crumple zones and airbags (Figure 3.2.4)—
are designed to extend ∆t. This reduces the force on the occupants of the vehicle, 
potentially saving lives and preventing injuries.

FIGURE 3.2.4  Airbags reduce the force on passengers by extending the time it takes for them to stop 
in the event of a collision.
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FIGURE 3.2.5  (a) Diagram of an airbag being inflated in a collision. (b) Graph illustrating the 
difference in the force on a passenger over time when an airbag is inflated in a collision (solid line), 
and when no airbag is present (dotted line).

Figure 3.2.5 shows a force vs time graph for a collision where an airbag is 
inflated compared with one where there is no airbag. The change in momentum, or 
impulse, of the passenger is the same in each case. Thus the area under each curve 
should be equal. Note, however, that both the peak force and the average force 
are significantly higher where there is no airbag. The broader peak for the airbag 
indicates that the passenger is losing their momentum over a longer time and thus 
requiring a lower force.

Hea
ds

ta
rt



123CHAPTER 3   |  THE RELATIONSHIP BETWEEN FORCE, ENERGY AND MASS

CASE STUDY ANALYSIS

Worldwide, car accidents are responsible for millions of 
deaths each year. Many times this number of people are 
injured. One way of reducing the road toll is to design 
safer vehicles. Modern cars employ a variety of safety 
features that help to improve the occupants’ chances of 
surviving an accident. Some of these safety features are 
the antilock braking system (ABS), electronic stability 
control (ESC), inertia reel seatbelts, variable-ratio-response 
steering systems, collapsible steering columns, head rests, 
shatterproof windscreen glass, padded dashboards, front 
and side air bags, front and rear crumple zones and a 
rigid passenger compartment.

Some cars today are equipped with collision avoidance 
systems. These have radar, laser or infrared sensors that 
advise the driver of a hazardous situation. They may even 
take control of the car when an accident appears likely.

The purpose of such safety features as inertia 
reel seatbelts, collapsible steering columns, padded 
dashboards, air bags and crumple zones is not to reduce 
the size of the impulse, but to reduce the size of the forces 
that act to bring the car to a stop. Automotive engineers 
strive to achieve this by extending the time over which the 
driver loses momentum.

Crumple zones
A popular misconception is that cars would be much 
safer if they were sturdier and more rigid. Drivers often 
complain that cars seem to collapse too easily during 
collisions, and that it would be better if cars were 
structurally stronger—more like an army tank. In fact, 
cars are specifically designed to crumple to some extent 
(Figure 3.2.6). This makes them safer and actually reduces 
the seriousness of injuries suffered in car accidents.

Army tanks are designed to be extremely sturdy and 
rigid vehicles. They are able to withstand the effect of 
collisions without suffering serious structural damage. If a 
tank travelling at 60.0 km h−1 crashed into a solid obstacle, 
the tank would be relatively undamaged. However, its 
occupants would very likely be killed. This is because the 
tank has no give in its structure and so the tank and its 
occupants would stop in an extremely short time interval. 
The occupants would lose all of their momentum in an 
instant, which means that the forces acting on them would 
necessarily be very large. These large forces would cause 
the occupants of the tank to sustain very serious injuries, 
even if they were wearing seatbelts.

Cars today have strong and rigid passenger 
compartments; however, they are also designed with non-
rigid sections— such as bonnets and boots—that crumple 
if the cars are struck from the front or rear (Figure 3.2.7). 
The chassis contains parts that have grooves or beads 
cast into them. In a collision, these grooves or beads 
act as weak points, causing the chassis to crumple in a 
concertina shape.

Car safety and crumple zones

FIGURE 3.2.6  Cars are designed with weak points in their chassis that 
enable the car to crumple in the event of a collision. This extends the 
time over which the cars come to rest and so reduces the size of the 
forces acting on the occupants.

FIGURE 3.2.7  The Australian New Car Assessment Program (ANCAP) 
assesses the crashworthiness of new cars. This car has just crashed at 
50 km h−1 into a 5 t concrete block. The crumpling effect can clearly be 
seen.

By crumpling the front or rear of the car, the time 
interval over which the car and its occupants come to a 
stop is extended. This stopping time is typically longer 
than 0.1 s in a 50 km h−1 crash. Because the occupants’ 
momentum is lost more gradually, the peak forces that 
act on them are smaller and so the chances of injury are 
reduced.

continued over page
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3.2 Review

•	 When a force is exerted on an object over a time 
interval, ∆t, it brings about a change in momentum, 
∆p, by changing the velocity of the object:

F∆t = m∆v = ∆p
•	 Impulse is the change in the momentum of an 

object.

•	 The unit of Impulse is the newton second (N s) and 
the unit of change in momentum is kg m s−1. These 
units are equivalent.

•	 Impulse can be calculated from the area under a 
force vs time graph.

•	 When designing for safety, measures are taken 
to increase the time of an interaction in order to 
reduce the maximum force experienced during that 
interaction.

OA
✓ ✓ SUMMARY

Knowledge and understanding
1	 A 165 g cricket ball flies past the wicket at 155 km h−1 

and is stopped by the wicket keeper. Calculate the 
magnitude of the impulse delivered by the ball to the 
wicket keeper.

2	 When a tennis player serves, she hits a 57.0 g 
tennis ball at the top of its flight when the ball is 
momentarily stationary. It then leaves the racquet at 
144 km h−1. If the ball and racquet are in contact for 
0.0600 s, calculate the magnitude of the average force 
exerted by the racquet on the ball.

3	 A basketball of mass 0.625 kg is bounced against 
the court at a speed of 32.0 m s−1. It rebounds at 
24.5 m s−1. Calculate the average force exerted by the 
court on the ball if the interaction lasts 16.5 ms.

4	 Consider a 100 t train travelling at 50.0 km h−1.
a	 Calculate the momentum of the train.
b	 Calculate the magnitude of the impulse if the train 

were to collide with a 5.00 t truck at a level crossing 
and push the truck for 15.0 m before coming to 
rest.

KEY QUESTIONS

CASE STUDY ANALYSIS  Continued
Analysis
1	 Consider the driver of a car that crashes into a tree 

while driving north at 60.0 km h−1. If the driver has a 
mass of 90.0 kg, calculate the momentum of the driver 
just before the collision.

2	 If the driver comes to a complete stop as a result of 
the collision, calculate their change in momentum (i.e. 
the impulse).

3	 How would the impulse change if the collision 
occurred over a longer period of time?

4	 Compare the impulse experienced by a 90.0 kg driver 
of a car to the impulse experienced by a 90.0 kg driver 
of a tank if both were to crash and come to a stop 
from 60.0 km h−1.

5	 Calculate the force on the 90.0 kg car driver if the 
impulse experienced by the driver occurred over a 
period of 985 ms.

6	 Calculate the force on the 90.0 kg tank driver if the 
impulse experienced by the driver occurred over a 
period of 81.5 ms. Assume that the tank, like the car, is 
travelling north before the impact.

7	 Given that the conditions of a collision are identical 
except for the period of time over which the collision 
occurs, how would you describe the relationship 
between the force experienced and the period of time?
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		 Analysis

5	 Three balls of identical mass are thrown against a 
surface at the same speed.
Ball A stops on impact.
Ball B rebounds with 75% of its initial speed.
Ball C rebounds with 50% of its initial speed.
Order the balls in terms of their change in 
momentum, from least to most.

6	 A child wearing a backpack jumps from a tree and 
lands on her feet. Describe at least three factors that 
will influence the force on her knees and ankles when 
she lands. In your response, you may wish to refer to 
the child’s footwear, her landing technique and the 
surface on which she lands.

7	 Two crash-test cars of identical mass are travelling 
at 22.0 m s−1 towards a solid concrete block. Car A 
is designed with crumple zones built into the front 
of the chassis and car B is built with a rigid chassis. 
The passenger compartment of car A comes to rest 
in 0.0896 s after hitting the concrete block, while the 
passenger compartment in car B comes to rest in 
0.00400 s. By what factor does the average force on 
car B compare to car A?

8	 The graph below represents the force exerted by 
an athlete’s foot over the 200 ms that his foot is in 
contact with the ground.
a	 Calculate the magnitude of the impulse of the 

athlete on the ground.
b	 Calculate the magnitude of the average force 

exerted by his foot over the duration of the contact.
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9	 A tennis ball of mass 57.5 g is tested for compliance 
with tennis regulations by being dropped from a height 
of 251 cm onto concrete. A bounce height of 146 cm is 
deemed acceptable. Find the magnitude of the average 
force on a ball that just reaches the acceptable height if 
it is in contact with the concrete for 0.0550 s.
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3.3 Work done
In everyday language, the concept of work is associated with effort and putting 
energy into something, whether it be your studies, sports or a part time job. 
Although the word work has a much more specific meaning in physics, it is still 
connected with energy.

When an unbalanced force acts on an object over a time interval, the object 
accelerates and its momentum changes. When the force causes a displacement 
in the direction of the object, the energy of the object changes, and we say that 
work has been done. The weightlifter in Figure 3.3.1 does work by exerting a force 
and causing the barbell to undergo a displacement. The gravitational potential 
energy of the barbell is increased and the store of chemical energy in the muscles 
of the weightlifter is decreased.

FIGURE 3.3.1  Suamili Nanai broke the Australian clean-and-jerk record in July 2021 by lifting 201 kg 
above his head in two movements.

CALCULATING WORK
Work is the transfer of energy from one object to another and/or the transformation 
of energy from one form to another. A force does work on an object when it acts on 
that object and causes a displacement in the direction of the force. Where the force 
is constant, the work done by the force is given by the following equation.

W = Fs
where W is the work done by the force (J)
	 F is the magnitude of the constant force (N)
	 s is the displacement (m)
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If the force is applied at an angle to the displacement, only the component of 
the force in the direction of the displacement contributes to the work done. If the 
force and displacement vectors are at an angle θ to each other, then F cos θ is the 
component of force that does work.

W = Fs cos θ
where W is the work done by the force (J)
	 F is the magnitude of the constant force (N)
	 s is the displacement (m)
	 θ is the angle between the force and displacement vectors

While both force and displacement are vectors, work and energy are scalar 
quantities and are measured in joules (J).

To find the work done on an object, it is the net force that needs to be used. For 
instance, if a person pushes a heavy couch across a carpeted floor, the work done 
on the couch depends on the force applied by the person less the frictional force 
that opposes the motion:

W = ∆E = Fnet s
In this section we will assume that any force that acts to do work on an object is 

the net force.

Worked example 3.3.1

FORCE APPLIED AT AN ANGLE TO THE DISPLACEMENT

A rope that is 30.0° to the horizontal is used to pull a 10.0 kg crate across a rough 
floor. The crate is initially at rest and is dragged 4.00 m along the floor. The tension, 
Ft , in the rope is 50.0 N and the frictional force, Ff , opposing the motion is 20.0 N.

Ft = 50.0 N

Ff = 20.0 N

30.0º

a	 Determine the work done by the person.

Thinking Working

Draw a diagram of the forces in action. Ft

F

F = Ft cos 30.0º = 43.3 N       Ff = 20.0 N 

Find the component of the tension 
in the rope that is in the direction of 
the displacement (shown by the red 
arrow).

F = 50.0 × cos 30.0° = 43.3013 N

Find the work done by the person. W = Fs

= 43.3013 × 4.00

=1.73205 ×102

=1.73 ×102 J

PHYSICSFILE

How much work does it take 
to break a record?
In July 2021, weightlifter Suamili 
Nanai (Figure 3.3.1) became the 
male Australian record holder for the 
clean-and-jerk when he lifted 201 kg 
from the ground to above his head. 
While it is difficult to determine how 
much time and effort had gone into 
Nanai’s preparations for breaking the 
record, we can calculate the work he 
did against gravity to lift the record 
mass. Assuming that he lifted the mass 
from the ground to 205 cm above the 
ground, we can calculate the work 
done as:

W = Fs

= mgs

= 201× 9.8× 2.05
= 4038.1

= 4040 J
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b	 Calculate the work done on the crate.

Thinking Working

The work done on the crate is the net force 
acting on it multiplied by the displacement. 
(This is also the increase in the kinetic 
energy of the crate.)

W = Fs

= (F − Ff )s

= (43.3013 − 20.0) × 4.00

= 93.20

= 93.2 J

c	 Calculate the energy transformed to heat and sound due to the frictional 
force.

Thinking Working

Energy transformed to heat and sound 
due to the frictional force is the difference 
between the work done by the person and 
the energy gained by the crate.

E =173.2 − 93.20

= 79.99

= 80.0 J

This is equal to the work done against 
friction, which can also be calculated from 
the frictional force.

Wf = Ffs

= 20.0 × 4.00

= 80.0 J

Worked example: Try yourself 3.3.1

FORCE APPLIED AT AN ANGLE TO THE DISPLACEMENT

A boy moves a toy car by pulling on a cord that is attached to the car at 45.0° to 
the horizontal. The boy applies a force of 15.0 N and pulls the car for 10.0 m along 
a path against a frictional force of 6.00 N.

Ft = 15.0 N

Ff = 6.00 N

45.0º

a	 Determine the work done by the boy pulling on the cord.

b	 Calculate the work done on the toy car.

c	 Calculate the energy transformed into heat and sound due to the frictional 
force.

When a force performs no work
It is important to remember that work is only done when a force, or a component 
of a force, is applied in the direction of displacement. Hence it is possible to exert a 
force and feel very tired without doing work. This would mean no energy has been 
transferred. For example, if you hold a heavy object in outstretched arms you will 
get tired very quickly, but you are not doing any work on the object.

Similarly, an object moving in a circular path in a horizontal plane is constantly 
accelerated by a centripetal force. Because this force is perpendicular to the 
displacement at each instant, the force does no work, and no energy is transferred to 
the object. It does not get faster or slower; it only changes direction (Figure 3.3.2).
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FIGURE 3.3.2  A body moving in a circular path 
has a force directed towards the centre of the 
path. The displacement is in the direction of 
the velocity. There is therefore no force in the 
direction of the displacement and thus no work 
is done.
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FORCE VS DISTANCE GRAPHS
When the force is constant, the work done is easily calculated. However, in many 
situations the net force is changing. In these situations, a graph can be used to 
calculate the work done. Where the force vs distance relationship is represented 
graphically, the work done is the area under the graph. This principle is very similar 
to the way in which impulse can be calculated from the area under a force vs time 
graph. However, it is important not to confuse these two quantities.

When graphed, the relationship between the force and the distance stretched 
of an elastic object, such as a spring, offers a way to calculate the work done 
in stretching the material: the work done is the area under the force vs distance 
stretched graph.

If the force vs distance graph, or force vs distance stretched graph, is not linear, 
the area can be calculated by counting squares. It is important to take careful note 
of the units in order to calculate the work represented by each square.

Worked example 3.3.2

CALCULATING WORK DONE FROM A GRAPH

The force required to stretch a piece of bungee cord is represented in the graph 
below. Calculate the work done when a 60 N force is applied to the cord.
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Thinking Working

The work done is the 
area under the force vs 
distance graph. This may 
be found by calculation, 
or by counting squares. In 
this case it is best to divide 
the area into triangles and 
rectangles and sum the 
individual areas. 40
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Force vs distance stretched 
of a bungee cord

Add the areas together to 
calculate the work done. Area = (1

2
× 0.50 × 30) + (1

2
× 0.90 × 30) + (30 × 0.90)

Work done = 48 J
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Worked example: Try yourself 3.3.2

CALCULATING WORK DONE FROM A GRAPH

The force required to elongate a piece of rubber tubing is represented in the 
graph below. Calculate the work done when the tubing is stretched by 2.0 m.

Force vs distance stretched
of rubber tubing
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3.3 Review

•	 When a force does work on an object, there is a 
change in the displacement and energy of the 
object.

•	 Work, W, is a scalar and is measured in joules (J).

•	 The work done on an object is the net force on the 
object multiplied by the displacement moved in the 
direction of the force: W = Fs.

•	 When the force is applied to an object at an angle 
to the displacement, work is only done by the 
component of the force in the direction of the 
displacement: W = Fs cos θ.

•	 A centripetal force does no work on an orbiting 
object, as the force and displacement are 
perpendicular.

•	 The work done by a varying force is the area under 
the force vs distance graph.

OA
✓ ✓ 

SUMMARY
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Knowledge and understanding
1	 Describe a scenario in which a force is applied but no 

work is done.

2	 If we consider the Earth to orbit the Sun in a circular 
path with a constant gravitational force of attraction, 
justify the statement that the Sun does no work on 
the Earth.

3	 A child uses a string to drag a 2.00 kg toy across a 
floor. The string is held at an angle of 60.0° to the 
horizontal and the child applies a force of 30.0 N on 
the toy, which is initially at rest. A constant frictional 
force of 10.0 N acts on the toy as it is dragged 2.40 m 
along the floor.
a	 Calculate the work done by the horizontal 

component of the 30.0 N force.
b	 Calculate the work that the child does in 

overcoming friction.
c	 Calculate the kinetic energy gained by the toy.

4	 The graph below shows the force vs distance graph as 
a sports shoe is compressed during the stride of an 
athlete. Calculate the work done in compressing the 
shoe by 7 mm.
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5	 A weightlifter raises a 155 kg barbell to a height of 
1.20 m at constant speed. Calculate the work done by 
the weightlifter.

6	 Krisha pushes a lawnmower at constant speed across 
15.0 m of lawn. She applies a force of 68.0 N at an 
angle of 60.0° to the horizontal. Calculate the work 
she does against friction.

Analysis
7	 An engineer is testing a new material for its elastic 

properties. By applying various forces on a sample 
and measuring its corresponding distance stretched, 
the following data were obtained.

Force (kN) Distance stretched (mm)

0.0 0.00

5.0 2.00

10.0 6.00

15.0 8.00

20.0 7.50

25.0 5.50

30.0 3.00

35.0 1.00

40.0 0.00

a	 Construct a graph of the data with force on the 
y-axis and distance stretched on the x-axis. Ensure 
that you draw a smooth curve of best fit.

b	 Use the graph to calculate the work done up to the 
point of maximum distance stretched.

8	 An 806 g javelin is released at an angle of 45.0° from 
a height of 1.90 m and at a speed of 108 km h−1. 
Calculate the work done by the gravitational force on 
the javelin from its release to the point where it lands 
on the ground.

KEY QUESTIONS
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3.4 Elastic potential energy
In everyday life, you frequently encounter situations in which work is done to stretch 
or compress materials. Think of bungee jumping, pole vaulting (Figure  3.4.1), 
trampolining and tennis, where the elastic properties of materials are harnessed to 
generate thrills for spectators and participants. Computer keyboards have tiny springs 
in the keys, and wind-up toys, old-fashioned watches, door-closing mechanisms and 
car suspensions are some of the other devices that use elastic springs.

Elastic potential energy is the energy stored in a material when it is stretched 
or compressed. If the material is elastic, this energy can be returned to the system, 
but in inelastic materials permanent change occurs.

FIGURE 3.4.1  The elastic potential energy stored in the pole is what allows the pole vault competitor 
to propel herself over the bar.
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FIGURE 3.4.2  Both springs represented in this 
graph are ideal (i.e. they obey Hooke’s law). 
The springs obey Hooke’s law because they 
both have linear graphs, but they have different 
degrees of stiffness. The stiff spring has a spring 
constant of 200 N m−1. The spring constant of 
the other more elastic spring is just 50 N m−1. 
The stiffer spring has the higher gradient (i.e. a 
steeper line) on the graph.

HOOKE’S LAW
It is relatively easy to start stretching a spring, but more and more force is required 
for each incremental amount of extension (distance stretched). This is expressed 
in Hooke’s law.

F = −kx
where F is the force exerted by the spring (N)
	 k is the spring constant (N m−1)
	 x is the displacement (the extension or compression) of the spring (m)

Hooke’s law describes how the force exerted by a spring is directly proportional 
to, but opposite in direction to, the distance that the spring is extended or 
compressed. The spring constant k is a measure of the stiffness of the spring. The 
behaviour of a spring under force is often illustrated graphically by plotting the 
force applied versus the extension achieved (Figure 3.4.2). The spring constant is 
represented by the gradient of the graph. Notice that a stiffer spring has a greater 
gradient and thus a larger spring constant.

When considering the work done in deforming a spring, the force applied is 
in the direction of the displacement and hence the negative sign in F = −kx can 
be ignored. The applied force is directly proportional to displacement and, as 
discussed in the previous section, when force is not constant, the work done by the 
force can be calculated (or estimated) by determining the area under the force vs 
distance graph.

PHYSICSFILE

Recovery straps and tow 
ropes
Recovery straps are used to pull 
bogged cars out of their predicament 
using the energy stored in the 
elasticised straps. When the recovery 
vehicle moves forward, the kinetic 
energy of the recovery vehicle causes 
the strap to stretch. The energy is 
stored in the recovery strap and is then 
transferred to the bogged vehicle over 
an extended period of time, which pulls 
it out of the sand or mud. Using a tow 
rope, which has no elasticity, would 
cause a greater force over a shorter 
period, which could cause damage 
to the recovery vehicle, the bogged 
vehicle, or the tow rope itself.

Conversely, you would not use a 
recovery strap to tow a broken down 
vehicle, as the energy stored in the 
strap would cause the vehicle in tow 
to ‘bounce’ forwards and backwards, 
which would make it difficult to control. 
Using a tow rope with less stretch 
means that the kinetic energy of the 
towed vehicle would not fluctuate and 
so its velocity could be maintained 
safely.
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An expression for the work done in extending or compressing a spring, and 
the elastic potential energy which is then stored in the spring, can now be derived. 
Consider the graph in Figure 3.4.3. The elastic potential energy when the spring is 
extended by 5 metres is represented by the area of the shaded triangle.

Es =
1
2
kx2

where k is the spring constant (N m−1)
	 x is the distance the spring is extended, also called extension (m)

Elastic potential energy is the energy stored in any elastic medium—such as a rope, 
spring or rubber band—due to forces stretching or compressing the bonds between 
atoms. 

We call the directly proportional relationship between force and extension 
‘elastic behaviour’. Elastic behaviour obeys Hooke’s law. Springs that exhibit elastic 
behaviour will be able to do work with the elastic potential energy when the applied 
force is removed.

It is possible to exceed the elastic limit of a spring or other elastic material. At 
this point permanent deformation occurs, that is, the spring no longer returns to 
its initial shape. If the force is increased further, the breaking point is reached, at 
which point the material fails or breaks down (Figure 3.4.4).

While the work done in permanently deforming a spring can still be calculated 
from the area under the force vs distance curve, the energy stored may not all be 
recoverable, as work has been done to permanently change the material.
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FIGURE 3.4.4  The point at which the force 
vs distance curve first deviates from linear 
behaviour is the elastic limit, i.e. the point where 
permanent damage is done to the spring.
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FIGURE 3.4.3  The elastic potential energy is calculated by the area under the force vs distance graph.

The elastic potential energy, Es, is calculated as follows:

Es =
1
2
×  base ×  height

=
1
2
× x × F

=
1
2
× x × kx

= 1
2
kx2

Hea
ds

ta
rt



AREA OF STUDY 1   |   HOW DO PHYSICISTS EXPLAIN MOTION IN TWO DIMENSIONS?134

Worked example 3.4.1

CALCULATING THE SPRING CONSTANT, ELASTIC POTENTIAL  
ENERGY AND WORK

A fine steel wire has the force and extension properties shown in the graph below.
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a	 Calculate the spring constant, k, for the wire.

Thinking Working

The spring constant is the gradient of 
the first linear section of the graph (in 
units N m−1).

k = ΔF
Δx

= 40
0.020

= 2000 N m−1

b	 Calculate the elastic potential energy that the wire can store before 
permanent deformation begins.

Thinking Working 

The elastic potential energy is the area 
under the curve up to the elastic limit. Es =

1
2

height ×base

=
1
2
× 40 × 0.020

= 0.40 J

This value can also be obtained 
using the formula for elastic potential 
energy.

Es =
1
2
kx2

= 1
2
× 2000 × (0.020)2

= 0.40 J
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c	 Calculate the work done to break the wire.

Thinking Working 

Add up the number of 
squares under the curve up to 
the breaking point. 

Number of squares = 33 (approx.)

Calculate the energy per 
square. This is given by the 
area of a square. Remember 
to convert mm to m.

Energy for one square = 10 × 0.005

	 = 0.050 J

Multiply the energy per 
square by the number of 
squares.

	Work = energy per square × number of squares

	 = 0.050 × 33

	 = 1.650

	 = 1.7 J (approx.)

Worked example: Try yourself 3.4.1

CALCULATING THE SPRING CONSTANT, ELASTIC POTENTIAL  
ENERGY AND WORK

An alloy sample is tested under tension, giving the force vs extension graph shown 
below. X indicates the elastic limit and Y indicates the breaking point.
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a	 Calculate the spring constant, k, for the sample. 

b	 Calculate the elastic potential energy that the alloy can store before 
permanent deformation begins.

c	 Calculate the work done to break the sample.
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		 3.4 Review

•	 Hooke’s law states that the force exerted by a 
spring is F = −kx. The negative sign indicates that 
the force opposes the displacement.

•	 k is the spring constant and is measured in N m−1. 
This can be calculated (or estimated) from the 
gradient of the linear section (or the first linear 
section if there is more than one) of a force–
displacement graph.

•	 The work done to a spring is equal to the elastic 
potential energy stored in the spring:

Es =
1
2
kx2

•	 The elastic potential energy (Es ) is measured in J or 
N m. This can be calculated (or estimated) from the 
area under a force–displacement graph.

•	 When a material displays elastic behaviour, it obeys 
Hooke’s law, and the elastic potential energy stored 
is returned when the force is removed.

•	 When a material exceeds its elastic limit, 
permanent deformation occurs and not all the 
elastic potential energy is returned when the force 
is removed.

OA
✓ ✓ 

SUMMARY

Knowledge and understanding
1	 Rank the springs below in order of increasing 

stiffness.
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2	 Consider the following tasks and decide whether 
you would prefer a rope with a high, medium or low 
spring constant.
a	 lowering a prefabricated concrete panel into place 

on a high-rise building site
b	 towing a bogged car out of a muddy track
c	 making a cargo net to secure various loads in a 

trailer

3	 The graph of the stretching force versus extension for 
two springs is shown below.
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a	 Calculate the spring constant of each spring.
b	 Find the difference between the elastic potential 

energy stored when each of the springs is extended 
by 20 cm. Assume the elastic limit has not been 
reached.

4	 A 1.00 m piece of rubber has a spring constant of 
50.0 N m−1. Calculate how much the rubber will 
stretch if a force of 4.00 N is exerted on it.

5	 A stretched rubber band is used to launch a toy plane 
into the air. The rubber band is stretched by 25.0 cm 
and has a spring constant of 128 N m−1. Assume that 
the rubber band follows Hooke’s law and ignore its 
mass.
a	 Calculate the magnitude of the force applied to the 

rubber band to stretch it by 25.0 cm.
b	 Calculate the elastic potential energy stored in the 

stretched rubber band.

KEY QUESTIONS
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		  Analysis

6	 An archer purchased a new bow for the Olympics. The 
table below shows the force required to pull the string 
back by various distances (the distance between X 
and Y in the diagrams).

Force (N)
Distance between bow 

and string (m)

0.0 0.100

30.0 0.150

40.0 0.200

45.0 0.250

50.0 0.300

The illustrations below show the bow and its string 
when (a) no force is applied and (b) when some force 
is applied.

X Y X
Y

(a) (b)

Answer the following questions in the case where the 
archer has drawn the string back so that the distance 
between the bow and the string (XY) is 30.0 cm.
a	 Construct a graph of the force (N) vs XY distance 

(m).
b	 Use the graph to calculate the elastic potential 

energy stored in the stretched string.
c	 Calculate the work done by the archer.
d	 Does the string obey Hooke’s law as it is drawn 

back until the distance between X and Y is 
30.0 cm? Justify your answer.

e	 Where on the graph is the elastic limit of the string?
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3.5 Kinetic and potential energy
A bungee jumper stakes their life on the principle of the conservation of energy 
(Figure 3.5.1). The gravitational potential energy they lose as they begin their jump 
is rapidly converted to kinetic energy. As the bungee jumper approaches the ground, 
the kinetic energy is converted to elastic potential energy in the bungee cord. The 
jumper is then jerked back upwards (no doubt relishing the adrenalin rush) as 
the elastic potential energy is converted back to kinetic and potential energy. The 
calculations that ensure their safety are the subject of this section.

KINETIC ENERGY
Kinetic energy (Ek) is the energy of motion of a body. For low speeds, it is 
calculated using the following equation.

Ek =
1
2
mv2

where Ek is the kinetic energy of the object (J)
	 m is the mass of the object (kg)
	 v is the velocity of the object (m s−1)

This equation can be derived from the definition of work. Recall that if a force, 
F, acts on a body of mass m and causes a horizontal displacement of s, the work 
done is given by the formula W = Fs, which is equivalent to W = mas.

Start by rearranging the equation v2 = u2 + 2as to make s the subject:

s = v
2 − u2

2a

Substitute this into the second equation for work given above: W  =  mas.  
This yields:

W = ma v2 − u2

2a
⎛
⎝⎜

⎞
⎠⎟

= m v2 − u2

2
⎛
⎝⎜

⎞
⎠⎟

= 1
2
mv2 − 1

2
mu2

As the work is done to change the kinetic energy, then:

ΔEk =
1
2
mv2 − 1

2
mu2

For a particular speed, the equation can be simplified to:

Ek =
1
2
mv2

Kinetic energy in collisions
In perfectly elastic collisions, kinetic energy is transferred between objects and 
no energy is transformed into heat, sound or deformation. In these cases the 
following relationship holds:

Ek (before) = Ek (after)
In Section 3.1 you saw that, in a closed system, momentum is always conserved 

in a collision. The total energy is also conserved in a closed system. However, in 
general, kinetic energy is not conserved in collisions. These collisions are called 
inelastic collisions.

FIGURE 3.5.1  The bungee jumper is in free 
fall until the cord starts to take up some of the 
kinetic energy and convert it to potential energy.
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Perfectly elastic collisions do not exist in everyday situations, but they do exist 
in the interactions between atoms and subatomic particles. A collision between two 
billiard balls or the spheres in Newton’s cradle is almost perfectly elastic, because 
very little of their kinetic energy is transformed into heat and sound energy.

Collisions such as a bouncing basketball, a gymnast bouncing on a trampoline 
or a tennis ball being hit are moderately elastic, with about half the kinetic energy 
of the system being retained. Perfectly inelastic collisions are those in which the 
colliding bodies stick together after impact with no kinetic energy. Some car crashes, 
a collision between a meteorite and the Moon, and a collision involving two balls of 
plasticine could all be perfectly inelastic. In these collisions, most—and sometimes 
all—of the initial kinetic energy of the system is transformed into other forms of 
energy.

Worked example 3.5.1

ELASTIC OR INELASTIC COLLISION?

A car of mass 1000 kg travelling west at 20.0 m s−1 crashes into the rear of a 
stationary bus of mass 5000 kg. The vehicles lock together on impact. Using 
appropriate calculations, show whether the collision is elastic or inelastic.

Thinking Working 

Use conservation of momentum to 
find the final velocity of the wreck.

Σpinitial = Σpfinal

pinitialc + pinitialb = pfinal(c+b)

mcuc +mbub = mc+buc+b

1000 × 20.0 +5000 × 0 = (1000 +5000)v
20000 = 6000v

v = 3.33ms−1

Calculate the total initial kinetic 
energy before the collision.

Initially:

Ek =
1
2
mu2

= 1
2
×1000 × 20.02

= 2.00 ×105 J

Calculate the total final kinetic 
energy of the joined vehicles.

Finally:

Ek =
1
2
mv2

= 1
2
× (1000 +5000) × 3.332

= 33266.7

= 3.33 ×104 J

Compare the kinetic energy before 
and after the collision to determine 
whether the collision is elastic or 
inelastic.

The kinetic energy after the collision is 
less than the kinetic energy before it. 
Therefore the collision is inelastic.

The missing energy has been 
transformed into heat, sound and 
deformation of the vehicles. 

Worked example: Try yourself 3.5.1

ELASTIC OR INELASTIC COLLISION?

A 209 g softball with initial velocity 9.00 m s−1 to the right collides with a 
stationary baseball of mass 112 g. After the collision, both balls move to 
the right and the 209 g softball has a speed of 3.00 m s−1. Using appropriate 
calculations, show whether the collision is elastic or inelastic.
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POTENTIAL ENERGY
The gravitational potential energy of an object, Eg , is the energy stored in it due to 
its position in a gravitational field above a reference point. It is directly proportional 
to the mass of the object, m, its height above the reference point, ∆h, and the strength 
of the gravitational field, g. This is combined in the following equation.

Eg = mg∆h
where Eg is the gravitational potential energy (J)
	 m is the mass of the object (kg)
	 g is gravitational field strength (N kg −1)
	 ∆h is the height above the reference point (m)

This equation is derived from the fact that, in order to lift an object of mass m 
through a distance ∆h, work needs to be done against the force of gravity. Close 
to the surface of the Earth, this force is simply F = mg (where g = 9.8 N kg −1) and 
the distance travelled, s, is ∆h. Thus the work done is W = Fs, which is equal to the 
potential energy gained.

Calculating changes in gravitational potential energy from a 
force graph
When the gravitational force acting on an object varies, the gravitational potential 
energy can be calculated using a graph (in the same way that you calculated the 
work done by a varying force in sections 3.3 and 3.4). If the force is plotted as a 
function of distance, a graph like the one in Figure 3.5.2 is obtained.
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Gravitational force on a 10 kg body as a function of distance from Earth

FIGURE 3.5.2  Plot of the gravitational force acting on a 10 kg body as a function of the distance 
from the centre of the Earth. The shaded area represents the work done in moving the body from 
1.0 × 107 m to 3.0 × 107 m above the centre of the Earth.
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Worked example 3.5.2

DETERMINING CHANGES IN GRAVITATIONAL POTENTIAL ENERGY USING A 
FORCE VS DISTANCE GRAPH 

Using the graph in Figure 3.5.2, estimate the work done against the gravitational 
force in moving the 10 kg object from an orbital radius of 1.0 × 107 m to 
3.0 × 107 m, and hence find the gravitational potential energy gained.

Thinking Working 

Find the energy represented per 
square in the graph.

One square represents:

10 × 0.25 × 107 = 2.5 × 107 J

Identify the two values of distance that 
are relevant to the question.

The object starts at 1.0 × 107 m and 
finishes at 3.0 × 107 m.

Count the squares under the curve 
between the two distances and 
multiply the number by the energy 
per square.

Work done:

10.5 squares (approx.) × 2.5 × 107

= 2.6 × 108 J (approx.)

Potential energy gained = work done 2.6 × 108 J (approx.)

Worked example: Try yourself 3.5.2

CHANGES IN GRAVITATIONAL POTENTIAL ENERGY USING A FORCE VS 
DISTANCE GRAPH 

Using the graph in Figure 3.5.2, calculate the gravitational potential energy 
gained if the 10 kg object is moved from the surface of the Earth to 2.0 × 107 m 
above the centre of the Earth.

The disadvantage of the graph in Figure 3.5.2 is that it is specific to the mass 
of the object under consideration. Further, to construct the graph, the force on the 
10 kg object has to be calculated at each distance.

Sometimes it is more useful to create a graph of the force exerted per unit mass. 
Recall Newton’s law of universal gravitation:

Fg =
GMm
r 2

This can be rearranged as:
Fg

m
= g = GM

r 2

This is often called the gravitational field strength equation and it is dependent 
only on the mass that is generating the gravitational field. Such a graph can be used 
to calculate the work done on any mass in the field.
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Worked example 3.5.3

CHANGES IN GRAVITATIONAL POTENTIAL ENERGY USING A GRAVITATIONAL 
FIELD STRENGTH GRAPH

A decommissioned satellite of mass 1000 kg has an elliptical orbit around the 
Earth. At its closest approach (its perigee), it is 600 km above the Earth’s surface. 
At its furthest point (its apogee) it is 2000 km from the Earth’s surface. The Earth 
has a radius of 6.4 × 106 m. The gravitational field strength of the Earth is shown in 
the graph.
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a	 Calculate the change in potential energy of the satellite as it moves from its 
perigee to its apogee.

Thinking Working

Find the energy represented by each 
square in the graph.

One square represents

1.0 × 0.20 × 106 = 2.0 × 105 J kg−1

Count the squares under the curve 
for the relevant area, and multiply the 
total by the energy per kg represented 
by each square.

49 squares (approx.) × 2.0 × 105

= 9.8 × 106 J kg−1

Calculate the potential energy gained 
by the satellite by multiplying the work 
done by the mass of the satellite.

Energy gained:

Eg = 9.8 ×106 ×1000

= 9.8 ×109 J (approx.)

b	 The satellite is moving with a speed of 15 km s−1 at its perigee. How fast is it 
travelling at its apogee?

Thinking Working

First calculate the satellite’s kinetic 
energy at its apogee. Ekp = 1

2
mvp

2

= 1
2
×1000 × (15×103)2

=1.125 ×1011 J
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The gain in gravitational potential 
energy at its apogee is at the expense 
of kinetic energy.

Calculate the kinetic energy of the 
satellite at its apogee.

Eka = Ekp − Eg

=1.125 ×1011 − 9.8 ×109

=1.0 ×1011 J

Calculate the speed of the satellite at 
its apogee. Eka =

1
2
mva

2

1.0 ×1011 = 1
2
×1000 × va

2

va = 2 ×1.0 ×1011

1000

=14142.1 ms−1

=14kms−1

Worked example: Try yourself 3.5.3

CHANGES IN GRAVITATIONAL POTENTIAL ENERGY USING A GRAVITATIONAL 
FIELD STRENGTH GRAPH

A satellite of mass 1100 kg is in an elliptical orbit around the Earth. At its 
closest approach (perigee), it is just 600 km above Earth’s surface. Its furthest 
point (apogee) is 2600 km from the Earth’s surface. The Earth has a radius of 
6.4 × 106 m. The gravitational field strength of the Earth is shown in the graph.
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a	 Calculate the change in potential energy of the satellite as it moves from its 
perigee to its apogee.

b	 The satellite is moving with a speed of 8.0 km s−1 at its perigee. How fast is it 
travelling at its apogee?
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WORK AND ENERGY
Both work and energy are scalar quantities and thus have only magnitude. It is 
important, however, that you keep account of whether kinetic energy is being 
gained or lost by an object or whether gravitational potential energy is being gained 
or lost by the gravitational field. If work is being done by a body, it could lose kinetic 
energy as it slows down, or, if work is being done by the gravitational field, the field 
loses gravitational potential energy as the object falls. Conversely, if work is done on 
the body by an external force, the body would gain kinetic energy as it speeds up, or 
the gravitational field would gain gravitational potential energy as the object rises.

A weightlifter loses chemical potential energy as they exert a force on a barbell 
to lift the bar. If they lift the bar at constant speed, the bar does not gain kinetic 
energy, but the gravitational field gains gravitational potential energy. In drawing 
back an arrow, an archer does work on the bow, and this elastic potential energy is 
transformed to the kinetic energy of the arrow when the string does work on the 
arrow as it is released (Figure 3.5.3).

FIGURE 3.5.3  The archer does work on the bow and elastic potential energy is stored. This is later 
transformed into the kinetic energy of the arrow.
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		 3.5 Review

•	 Kinetic energy is the energy of motion of a body:

Ek =
1
2
mv2

•	 For perfectly elastic collisions, the kinetic energy 
before the collision is equal to the kinetic energy 
after the collision.

•	 Close to the surface of the Earth, where the force 
of gravity can be taken as constant, the change in 
gravitational potential energy of an object of mass m 
is Eg = mg∆h, where the height changes by ∆h.

•	 For a non-constant gravitational force, the 
gravitational potential energy can be calculated from 
the area under a graph of force versus distance.

•	 For convenience, force–distance graphs are often 
plotted as force per unit mass (for example, 
gravitational field strength) versus distance. This 
enables the same graph to be used for any mass. In 
this case the area under the graph is the potential 
energy per unit mass.

OA
✓ ✓ 

SUMMARY

Knowledge and understanding
1	 The figure below shows a meteor plunging towards 

the Earth, partially burning up in the atmosphere on 
its way.
Choose which statements are correct. More than one 
correct answer is possible.

A

B C

D

A	 The kinetic energy of the meteor increases as it 
travels from A to D.

B	 The gravitational potential energy of the meteor 
relative to the surface of the Earth increases as it 
travels from A to D.

C	 The total energy of the meteor increases as it 
travels from A to D.

D	 The total mechanical energy of the meteor remains 
constant.

E	 The gravitational potential energy of the meteor 
relative to the surface of the Earth decreases as it 
travels from A to D.

2	 In a cable car system, two cars of the same mass 
are attached to a moving cable that is powered by 
a motor at one end. As car A is pulled upwards, car 
B descends, both at the same speed. Select the 
statements that are correct. More than one correct 
answer is possible.
A	 Car A and car B each have constant kinetic energy.
B	 Car A and car B each have constant gravitational 

potential energy.
C	 As the gravitational potential energy of car A 

increases, that of car B decreases.
D	 The motor does work on the cable.

3	 Calculate the gravitational potential energy of a 115 kg 
climber standing at the top of Mount Kosciuszko 
2228 m above sea level.

4	 A 283 g volleyball is hit into the opposition court with 
a velocity of 9.50 m s−1. Calculate the kinetic energy of 
the volleyball as it leaves the player’s hand.

5	 Calculate the gravitational potential energy that 
a 3.00 kg watermelon has when it has travelled 
45.0 m up into the air after having been fired from a 
slingshot.

KEY QUESTIONS

continued over page
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Analysis
6	 The 11 t Hubble telescope is in a circular orbit at an 

altitude of approximately 600 km above the surface 
of the Earth. A geosynchronous weather satellite 
of the same mass is in an orbit at an altitude of 
approximately 3600 km. Select the statements that 
are correct. More than one correct answer is possible.
A	 The gravitational potential energy of the 

geosynchronous satellite is six times that of the 
Hubble telescope, relative to the surface of the 
Earth.

B	 The Hubble telescope’s orbital speed is greater 
than that of the weather satellite.

C	 The kinetic energy of the weather satellite is greater 
than that of the Hubble telescope.

D	 The weather satellite has more gravitational 
potential energy than the Hubble telescope, relative 
to the surface of the Earth.

7	 A 500 kg lump of space junk is plummeting towards 
the Moon. Its speed when it is 2.7 × 106 m from the 
centre of the Moon is 250 m s−1. The Moon has a 
radius of 1.7 × 106 m.
The gravitational force–distance graph for the space 
junk is shown below.

Distance from centre of the Moon (× 106 m)
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a	 Calculate the kinetic energy of the junk when it is 
travelling at 250 m s−1.

b	 Calculate the increase in kinetic energy of the junk 
as it falls from 2.7 × 106 m from the Moon’s centre 
to 1.7 × 106 m from the Moon’s centre.

c	 Calculate the speed of the junk as it crashes into 
the Moon.

3.5 Review continued

8	 A 20 t piece of space junk is in orbit at an altitude of 
600 km above the surface of the Earth. In order to 
remove it from the path of an oncoming satellite, it 
is shifted into an orbit of 2600 km above the surface 
of the Earth. Calculate the work done in moving the 
space junk into the higher orbit. The surface of the 
Earth is 6.4 × 106 m from the centre of the Earth.
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3.6 Conservation of energy
We can classify everything we know about the universe as either matter or energy. 
In his famous equation E = mc2, Einstein showed that matter is actually a store of 
energy, so everything in the universe is really just energy. This section explores the 
law of conservation of energy, a fundamental principle that can be applied to all 
interactions between objects.

THE LAW OF CONSERVATION OF ENERGY
Energy comes in many forms, such as heat, light, sound, chemical and electrical. It 
is a scalar quantity and is measured in joules (J). Energy is also associated with the 
motion and position of an object. Collectively this energy is called the mechanical 
energy of the object. In the motion problems explored in this chapter, moving 
objects are described as having kinetic energy. An object can also have access to 
stored or gravitational potential energy because of its position in a gravitational 
field. For instance, a building crane lifting a steel beam several stories is doing work 
against the gravitational field, giving the beam access to the gravitational potential 
energy stored in the gravitational field. If the lifting chain were to break, the field 
will then do work on the beam and increase its kinetic energy as it accelerates under 
the influence of gravity.

The transformation of gravitational potential energy to kinetic energy is an 
illustration of the law of conservation of energy, a fundamental principle of 
nature. This law states that energy is neither created nor destroyed. However, it can 
change from one form to another, or in other words, transform. As the gravitational 
potential energy available to a falling object decreases, its kinetic energy increases. 
The total amount of mechanical energy remains constant, that is, it is conserved.

While energy is never destroyed, it can be transformed into other energies that 
are not easily recoverable. For instance, the kinetic energy of a vehicle is reduced as 
it encounters friction, with the energy transformed into heat in the tyres. It could 
also be transformed into heat in the brakes as the vehicle stops. The mechanical 
energy before and after an event is only the same under ideal conditions, but in 
many cases, this equality is a useful approximation.

Problems combining gravitational potential and kinetic energy
Energy is a scalar quantity and hence easier to work with than a vector quantity. 
Therefore it is worth analysing a problem to see if calculations involving energy are 
possible without resorting to techniques involving forces and other vectors.

The sum of the potential and kinetic energy of an object is its mechanical energy, 
and this is constant unless work is done by an external force:

Em = Ek + Eg = 
1
2

mv2 + mg∆h

Energy is frequently transformed from potential energy to kinetic energy and vice 
versa. But in any transformation, total mechanical energy is conserved. To illustrate 
this, consider a 60 g tennis ball dropped from a height of 1.0 m (Figure 3.6.1 on 
p. 148). Before it is released, its kinetic energy is 0 J and its gravitational potential 
energy (assuming that g = 9.8 m s−2) is:

Eg = mg∆h = (0.060)(9.8)(1.0) = 0.59 J
Thus the ball’s mechanical energy is 0 + 0.59 = 0.59 J.
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At the instant the ball hits the ground, the total mechanical energy consists of 
the gravitational potential energy available to it, which would be 0 J, and the kinetic 
energy it has just prior to hitting the ground. To calculate its kinetic energy, its 
velocity just before it hits the ground needs to be calculated using an appropriate 
equation of motion. Knowing that s = −1.0 m, a = −9.8 m s−2 and u = 0 m s−1, the final 
velocity can be calculated as:

v2 = u2 + 2as

= (0)2 + 2(−9.8)(−1.0)

v = 19.6 = 4.43ms−1

Therefore the kinetic energy of the ball just before it hits the ground is:

Ek =
1
2
mv2 = 1

2
(0.0600)(4.43)2 = 0.59J

Notice that the total mechanical energy prior to the ball’s release is the same as 
its total mechanical energy as it hits the ground. Before release:

Em = Ek + Eg = 0 + 0.59 = 0.59 J
On hitting the ground:

Em = Ek + Eg = 0.59 + 0 = 0.59 J
In fact, mechanical energy is constant throughout the drop. To see this, consider 

the tennis ball when it has fallen halfway to the ground. At this point, h = 0.50 m, 
v = 3.13 m s–1 and its mechanical energy is:

Em = Ek + Eg

= 1
2
(0.060)(3.13)2 + (0.060)(9.8)(0.50)

= 0.294+0.294
= 0.59J

Note that at the halfway point, the mechanical energy is evenly split between 
kinetic energy (0.294 J) and gravitational potential energy (also 0.294 J).

Em = Ek + Eg = 0 + mgh v = 0, so Ek = 0

∆h = 1.0 m

∆h = 0, so Eg = 0Em = Ek + Eg =    mv2 + 01
2

FIGURE 3.6.1  A falling tennis ball provides an illustration of the conservation of mechanical energy.
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In reality, as a ball drops through the air, a small amount of its energy is 
transformed into heat and sound, and the ball slows down slightly. This means 
that mechanical energy is not entirely conserved. However, this small effect can be 
considered negligible for many falling objects.

Using conservation of mechanical energy to calculate velocity
The speed of a falling object does not depend on its mass. This can be demonstrated 
by applying the law of conservation of energy to mechanical energy.

Consider an object of mass m dropped from a height of h. At the moment it is 
dropped, its initial kinetic energy is zero. At the moment before it hits the ground, 
its final gravitational potential energy is zero. From the conservation of mechanical 
energy it follows that:

Em initial = Em final

Ek initial + Eg initial = Ek final + Eg final

0+mgh = 1
2
mv2 +0

mgh = 1
2
mv2

gh = 1
2
v2

v2 = 2gh

v = 2gh

This equation can be used to find the final velocity of a falling object. Note that 
the equation does not mention the mass of the falling object. Thus if air resistance 
is negligible, any object will have the same final velocity when it is dropped from the 
same height, whatever its mass.

Conservation of mechanical energy in complex situations
Knowing that mechanical energy is conserved allows us to determine outcomes 
in non-linear situations where equations of motion cannot be used. For example, 
consider a pendulum with a bob displaced from its mean position such that its 
height has increased by 20 cm (Figure 3.6.2).

0.20 m

FIGURE 3.6.2  A falling pendulum is an example of conservation of mechanical energy.
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Since a pendulum involves transforming gravitational potential energy into 
kinetic energy, the conservation of mechanical energy applies to the situation. 
Therefore the formula developed earlier for the velocity of a falling object can be 
used to find the velocity of the pendulum bob at its lowest point:

v = 2gh = 2(9.8)(0.20) = 2.0ms−1

The speed of the pendulum bob will be approximately 2.0 m s−1. However, unlike 
a falling object, in this case the direction of the bob’s motion will be horizontal 
instead of vertical at its lowest point.

The equations of motion relate to linear motion and cannot be applied to the 
motion of the pendulum.

Worked example 3.6.1

APPLYING THE LAW OF CONSERVATION OF ENERGY

Consider a rollercoaster with a lift hill of height 25 m and a loop height of 18 m. 
At the top of the lift hill, a rollercoaster car has zero velocity just before it begins 
to roll down the hill. Calculate the speed of the car at point P on the loop when 
the car is 6.0 m above the ground. Assume that friction is negligible.

6.0 m

18 m
25 m

v = ?

P

Thinking Working

Because of the law of conservation 
of mechanical energy, the total 
mechanical energy, Em, of the car 
before rolling down the hill can be 
equated with the total mechanical 
energy at point P.

Em before = Em at P

Expand the equation and cancel m 
from both sides.

1
2
mu2 +mgΔh = 1

2
mv2 +mgΔh

1
2
u2 + gΔh = 1

2
v2 + gΔh

Substitute the given values into the 
equation.

1
2
(0)2 + (9.8)(25.0) = 1

2
v2 + (9.8)(6.0)

Rearrange the equation and solve for v. (0) + (245.0) = 1
2
v2 + (58.8)

v = 2(245.0 −58.8)

v = 372.4

Present your answer with the correct 
number of significant figures and the 
correct units.

v =19ms−1
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Worked example: Try yourself 3.6.1

APPLYING THE LAW OF CONSERVATION OF ENERGY

Use the law of conservation of energy to determine the height of the lift hill 
required to ensure that the speed of a rollercoaster car at the top of the 18 m 
loop is 25 m s−1. Assume that the velocity of the car at the top of the hill is zero 
just before it begins to roll down the hill, and that friction is negligible.

18 m
h = ?

Worked Example 3.6.2

USING THE CONSERVATION OF ENERGY TO ANALYSE PROJECTILE MOTION

A cricket ball of mass 142 g is thrown upwards at a speed of 15 m s−1. Calculate 
the speed of the ball when it has reached a height of 8.0 m above the ground. 
Assume that the ball is thrown from a height of 1.5 m above the ground and 
that g = 9.8 m s−2.

Thinking Working

Equate the total mechanical energy, 
Em, of the cricket ball as it is released 
with the total mechanical energy at a 
height of 8.00 m.

Em before = Em at 8.00 m

Expand the equation and then 
cancel m from both sides.

1
2
mu2 +mgΔh = 1

2
mv2 +mgΔh

1
2
u2 + gΔh = 1

2
v2 + gΔh

Substitute the given values into the 
equation.

1
2
(15)2 + (9.8)(1.5) = 1

2
v2 + (9.8)(8.0)

Rearrange the equation and solve 
for v.

(112.5) + (14.7) = 1
2
v2 + (78.4)

v = 2(112.5 +14.7 −78.4)

v = 97.6

Present your answer with the correct 
number of significant figures and the 
correct units.

v = 9.9ms−1

 

Worked Example: Try yourself 3.6.2

USING THE CONSERVATION OF ENERGY TO ANALYSE PROJECTILE MOTION

An arrow of mass of 35 g is fired into the air at 80 m s−1 from a height of 1.4 m 
above the ground. Calculate the speed of the arrow when it is 30 m above the 
ground. Assume that g = 9.8 m s−2.
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Loss of mechanical energy
Mechanical energy is not conserved in every situation. This can be seen in the fact 
that when a tennis ball bounces a number of times, each bounce is lower than the 
bounce before it (Figure 3.6.3).

While mechanical energy is largely conserved as the ball moves through the air, 
a significant amount of kinetic energy is transformed into heat and sound when 
the ball compresses and decompress each time it bounces. This means that the 
ball does not have as much kinetic energy when it leaves the ground as it did when 
it landed. Therefore the gravitational potential energy that can be stored on the 
second bounce will be less than the gravitational potential energy that was stored 
initially, and so the second bounce is lower.

FIGURE 3.6.3  Mechanical energy is lost with 
each bounce of a tennis ball. CASE STUDY

Coefficient of restitution
The bounce of the ball is an important factor in many sports. Physicists 
describe the bounciness of balls using a concept known as the coefficient of 
restitution (e). This coefficient is the ratio of the speed of a ball directly after a 
bounce to its speed before that bounce:

e = v2
v1

where v1 is the speed before the bounce and v2 is the speed after the bounce.

Since the coefficient of restitution is defined in terms of speed, v, and kinetic 
energy is proportional to v2, it follows that:

e = v2
v1

= (Ek )2
(Ek )1

If we consider a ball dropped from height H and rebounding to height h, then, 
according to conservation of mechanical energy, the kinetic energy as the ball 
hits the ground is the same as the gravitational potential energy at the top of 
the bounce. Therefore:

e = (Ek )2
(Ek )1

=
(Eg )2
(Eg )1

= mgh
mgH

= h
H

So the coefficient of restitution (CoR) can be calculated from the initial drop 
height and the height of the first bounce. This is how many sports bodies 
specify the acceptability of balls used in playing the sport.

For example, according to the rules of the International Table Tennis 
Federation, a table tennis ball must bounce between 24 and 26 cm when 
dropped from a height of 30.5 cm onto a steel block. This corresponds to a CoR 
between 0.89 and 0.92. Similarly, a basketball must have a CoR of between 
0.81 and 0.85 before it can be used in competition. Likewise a tennis ball must 
have a CoR of between 0.73 and 0.76.

The CoR depends on both the ball and the surface it is bouncing on. A tennis 
ball bouncing on grass has a different CoR to one bouncing on clay. This is one 
reason why tennis players prefer to play on some surfaces rather than others.
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		 3.6 Review

•	 Energy is a scalar quantity and is measured in 
joules (J).

•	 Energy is not created or destroyed, but merely 
transformed. This is called the law of conservation of 
energy.

•	 When work is done on a body it gains mechanical 
energy.

•	 When the body does work, energy is dissipated 
to the environment—as, for example, heat, sound 
or deformation—and the body loses mechanical 
energy.

•	 The sum of the kinetic and potential energy (i.e. the 
total mechanical energy) of an isolated system is 
always conserved.

•	 Because it is simpler to work with scalars, it is often 
helpful to solve motion problems by considering the 
energy involved.

OA
✓ ✓ 

SUMMARY

Knowledge and understanding
1	 Choose the best alternative to complete the following 

sentence. In physics, the law of conservation of energy 
entails that:
A	 All energy must be converted from one form into 

only one other form.
B	 When energy is converted from one form to 

another, any missing energy must have been 
destroyed.

C	 When energy is converted from one form to 
another, any extra energy gained must have come 
from gravitational potential energy.

D	 No energy is gained or lost when one form of 
energy is converted into another form.

2	 A student drops two sticks—one brown; one green—
from a bridge into the water below to see which one 
emerges first at the other side of the bridge. The 
brown stick is twice the mass of the green stick. In 
answering the following questions, ignore any air 
resistance and friction that might be involved.
a	 Which stick would hit the water first if they were 

dropped at the same time?
b	 Which stick would have access to the greatest 

amount of gravitational potential energy at the top 
of the bridge?

c	 Which stick would hit the water with the greatest 
speed?

d	 Which stick would have the greatest kinetic energy 
just before it hit the water?

3	 A group of people decide to film themselves throwing 
various objects off tall places. In one video they drop a 
bowling ball from the top of a dam wall. The ball hits 
the ground with a speed of 45.5 m s−1. Calculate the 
height of the dam wall.

4	 A high-diver steps off a 10.0 m high platform and 
plunges into the pool below. Calculate the speed at 
which the diver hits the water.

5	 If a high-jumper with a mass of 63.0 kg just clears a 
height of 2.10 m, what was the high-jumper’s speed 
as they left the ground?

6	 A girl throws a 198.4 g softball directly up into the air. 
It leaves her hand at a speed of 21.7 m s−1.
a	 Calculate the kinetic energy of the softball as it 

leaves the girl’s hand.
b	 If air resistance is ignored, what gain in 

gravitational potential energy occurs as the softball 
reaches the top of its flight?

c	 If air resistance is ignored, calculate the height the 
softball reaches above the girl’s hand.

Analysis
7	 A box slides down a frictionless plane that is inclined 

at 35.0° to the horizontal.

35.0°

12.0 m

Use the law of conservation of energy to calculate the 
speed of the box after it has travelled 12.0 m down 
the plane.

12.0 m

KEY QUESTIONS

continued over page
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8	 A group of students sets up a pendulum with a thin 
20.0 cm chain holding a heavy metal ball.

17.0 cm

85.0 cm

When the students tried to swing the pendulum for 
the first time, the chain broke just as the ball was 
85.0 cm from the floor and 17.0 cm below the point at 
which it started to swing.
a	 Calculate the speed of the ball at the point at which 

the chain breaks.
b	 The students were not expecting the chain to 

break. Use the law of conservation of energy and 
the answer from part a to calculate the maximum 
height above the ground the ball would have 
achieved if the chain didn’t break.

c	 Use the law of conservation of energy and the 
answer from part b to calculate the speed at which 
the ball strikes the ground.

d	 Use the law of conservation of energy and the 
starting point of the ball to calculate the speed at 
which the ball strikes the ground.

3.6 Review continued

9	 A 75.0 kg student swings out over a river on a rope 
attached to a tree on the riverbank. The student’s final 
speed when they hit the water is 6.27 m s−1.
a	 Calculate the kinetic energy of the student the 

moment before they hit the water.
b	 Determine the gravitational potential energy 

available to the student at the top of the riverbank 
before they began their swing.

c	 Using your answer to part b, calculate the height 
of the riverbank above the water level at the point 
where the student began their swing.
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KEY TERMS

Chapter review 03breaking point
conserved
deformation
elastic
elastic collision
elastic limit
elastic potential  

energy

gravitational potential 
energy

impulse
inelastic collision
isolated system
kinetic energy
law of conservation of 

energy

law of conservation of 
momentum

mechanical energy
momentum
spring constant
transform
work

OA
✓ ✓

Knowledge and understanding
1	 Arrange the following objects in order of decreasing 

momentum:
A	 10.0 kg dog running west at 5.00 m s−1

B	 42.0 kg child jogging south at 2.00 m s−1

C	 25.0 kg fish swimming east at 3 m s−1

D	 1250 kg car stationary at the traffic lights

2	 Which alternative from the list below shows the unit 
for momentum that is equivalent to kg m s−1?
A	 J m
B	 N s−1

C	 N s
D	 J s−1

3	 In an explosive collision, a combined mass 
separates into two masses. If one of the masses 
has momentum of 345 kg m s−1 south, what is the 
momentum of the other mass?

4	 Which of the following statements correctly 
describes impulse? More than one correct answer 
is possible.
A	 Impulse is the rate of change of momentum.
B	 Impulse is the final momentum minus the initial 

momentum.
C	 Impulse is a scalar.
D	 Impulse can be calculated from the force and 

the time over which the force acts.

5	 Use the concept of impulse to explain how airbags 
can help reduce injury during a car crash.

6	 In the case of a person pushing against a solid 
brick wall, explain why no work is being done.

7	 Contrast the meanings of the words ‘energy’ and 
‘work’.

REVIEW QUESTIONS

8	 A group of students has conducted an investigation 
into the properties of an elastic band. They collected 
data by hanging different masses on the elastic band 
and measuring the extension from its original length. 
Unfortunately the students cannot agree on what the 
gradient of the graph represents and what the area under 
the graph represents. Explain how you could resolve their 
confusion using the equations for gradient and area, and 
the units for force and extension.

9	 A squash ball that is repeatedly hit against a wall during 
a game becomes hot. Which of the following options 
explains this best?
A	 The racquet gives the ball kinetic energy.
B	 The impulse is positive.
C	 The collisions are perfectly elastic.
D	 Kinetic energy is not conserved in the collision.

10	 A student carries a fully loaded backpack along a 
horizontal footpath for 450 m on their way home from 
school. What work was done by the student on the 
backpack during this journey if the student walked at a 
constant pace all the way?

11	 An apple falls to the ground from a tree and strikes the 
ground with 45.5 J of kinetic energy. Ignoring any air 
resistance, how much gravitational potential energy did 
the apple have access to when it was on its branch.

12	 A tennis ball is hit with the frame of a racquet and goes 
straight upwards. While it is travelling upwards it is 
slowing down until it reaches its maximum height, where 
its speed is zero. Where has all of the kinetic energy 
gone? In your answer ignore any air resistance.

13	 A 70.0 kg rower steps out of a stationary boat with a 
velocity of 2.50 m s−1 onto a riverbank. The boat has a 
mass of 495 kg. With what velocity does the boat begin to 
move as the rower steps out?
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14	 A spacecraft of mass 1.00 × 104 kg that is initially at 
rest burns 5.00 kg of fuel to produce an equal mass of 
exhaust gases. The gases are ejected at a velocity of 
6.00 × 103 m s−1. Calculate the velocity of the spacecraft 
after this burn.

15	 A batter blocks a 165 g cricket ball travelling 
towards him at 104 km h−1. The ball leaves the bat at 
20.0 km h−1. Calculate the magnitude of the change in 
momentum of the ball.

16	 Calculate the magnitude of the average force required 
to be applied by the brakes of a 15.0 kg bicycle 
carrying a 65.0 kg rider if the bike and rider are 
travelling at 12.0 m s−1 and come to rest in 2.00 s.

17	 A polar research worker uses a tractor to drag a sled 
with supplies across a glacier. The harness is held 
at an angle of 60.0° to the horizontal and applies a 
force of 316 N on the sled, which is initially at rest. A 
constant frictional force of 105 N acts on the sled as it 
is dragged for a distance of 245 m.
a	 For this distance, calculate the work done by the 

tractor on the 152 kg sled.
b	 Find the speed of the sled after travelling 245 m.

18	 A student wanting to increase their upper-body 
strength decides to stretch a piece of bungee cord 150 
times each morning before school. From the force vs 
extension graph for the cord given below, estimate how 
much energy is expended in the workout if the student 
stretches the cord from 0.5 m to 1 m each time.
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19	 A steel cable 1.50 m long is stretched by fixing it at one 
end and applying a force to the other end. The graph 
of the force applied and the extension achieved is 
shown below.
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Estimate the elastic potential energy stored in the cable 
when stretched by a distance of 6.0 mm.

20	 The mass of a motorbike and its rider is 232 kg. If they 
are travelling at 80.0 km h−1, calculate their combined 
kinetic energy.

21	 A car of mass 1540 kg is travelling at 17.0 m s−1. How 
much work would its engine need to do to accelerate 
the car to 28.0 m s−1?

22	 A 57.0 g tennis ball is thrown 8.20 m into the air.
a	 Calculate the gravitational potential energy of the 

ball at the top of its flight.
b	 Calculate the gravitational potential energy of the 

ball when it has fallen halfway back to the ground.

23	 When climbing Mount Everest (h = 8848 m), a 
mountain climber stops to rest at North Base Camp 
(h = 5150 m). If the climber has a mass of 65.0 kg, how 
much gravitational potential energy will she gain in the 
her climb from North Base Camp to the summit? For 
simplicity, assume that g is 9.80 m s−2 for the whole 
climb.

Application and analysis
24	 Two identical bowling balls, each of mass 4.00 kg, move 

towards each other across a frictionless horizontal 
surface with equal speeds of 3.00 m s−1. During the 
collision 20.0 J of kinetic energy is transformed into 
heat and sound. After the collision the balls move in 
opposite directions.
a	 Is momentum conserved in this collision?
b	 Is this an elastic or inelastic collision? Explain your 

answer.
c	 Calculate the speed of each ball after the collision.

CHAPTER REVIEW CONTINUED
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25	 An 80.0 kg student jumps from a bridge at the end of 
a bungee rope. When the student drops the full length 
of the 134 m bungee rope it then stretches by 10.0% 
as the student comes to a stop. Calculate the spring 
constant of the rope.

26	 A student throws a basketball upwards with an initial 
speed of u m s−1 and notes that it reaches a maximum 
height above their hand of h m. If the student then 
throws the ball with an initial speed of 2u m s−1, how high 
will the ball now go? Give your answer in terms of h.

27	 Two children are standing on a bridge throwing stones 
into the river below. Susan throws a stone upwards, 
and Peter throws a stone downwards and at the same 
speed. Select the correct answer from the following 
options and justify your choice.
A	 Both stones will hit the water at the same speed.
B	 The stone that is thrown downwards by Peter will 

hit the water at a greater speed than Susan’s stone 
which was thrown upwards.

C	 Susan’s stone will hit the water at a greater speed 
than Peter’s stone.

D	 More information is required to determine which 
stone hits the water at the greatest speed.

28	 An 11.0 t satellite is in orbit at an altitude of 1130 km 
above the surface of the Earth. A booster rocket is fired 
putting the satellite into an orbit of altitude 2130 km. 
The graph below shows how the gravitational field 
changes as the distance from the centre of the Earth 
varies. The radius of the Earth is 6.37 × 106 m and the 
mass of the Earth is 5.98 × 1024 kg.
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a	 Using the graph above, estimate the work done by 
the booster rocket in increasing the potential energy 
of the satellite.

b	 Calculate the kinetic energy of the satellite in its final 
orbit.

29	 A new space telescope is 631 km above the surface 
of the Earth and in a circular orbit. Its mass is 
1.10 × 107 kg. Use the graph below to estimate its 
gravitational potential energy relative to the surface of 
the Earth.

10

12

8

4

6

2

9

11

7

3

5

1

13

0
6 7 8 9 10

G
ra
vi
ta
tio

na
l fi

el
d 
st
re
ng

th
 (N

 k
g–1

)
Distance from the centre of the Earth (× 106 m)

function of distance from the Earth
Gravitational �eld strength as a

30	 A 264 g toy truck with a springy bumper is travelling 
at 0.300 m s−1. It collides with a 112 g toy car travelling 
in the same direction at 0.200 m s−1. The car moves 
forwards at a speed of 0.300 m s−1.
a	 Calculate the speed of the truck after the collision.
b	 Calculate the total kinetic energy of the system 

before the collision.
c	 Calculate the total kinetic energy of the system after 

the collision.
d	 Complete the following statements by selecting the 

appropriate option from those in bold.
i	 The total kinetic energy before the collision is 

more than/less than/equal to the total kinetic 
energy after the collision.

ii	 The kinetic energy of the system of toys is/is not 
conserved.

iii	The total energy of the system of toys is/is not 
conserved.

iv	 The total momentum of the system of toys is/is 
not conserved.

v	 The collision is/is not perfectly elastic because 
kinetic energy/total energy/momentum is not 
conserved.
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