

STUDENT COMPANION NSW

Pearson Secondary Teaching Hub Maths 8 NSW
 Student Companion

Contributing authors:

Greg Carroll, David Coffey, Grace Jefferson, Garthe Jones, Diane Oliver, Shaun Oliver, Sarah Plummer and Nicola Silva

[^0]We pay our respects to Elders, past and present.

Pearson Australia

(a division of Pearson Australia Group Pty Ltd)
459-471 Church Street
Level 1, Building B
Richmond, Victoria 3121
www.pearson.com.au
Copyright © Pearson Australia 2024
(a division of Pearson Australia Group Pty Ltd)
First published 2024 by Pearson Australia
2027202620252024
10987654321

Reproduction and communication for educational purposes

The Australian Copyright Act 1968 (the Act) allows a maximum of one chapter or 10% of the pages of this work, whichever is the greater, to be reproduced and/or communicated by any educational institution for its educational purposes provided that that educational institution (or the body that administers it) has given a remuneration notice to the Copyright Agency under the Act. For details of the copyright licence for educational institutions contact the Copyright Agency (www.copyright.com.au).
Reproduction and communication for other purposes Except as permitted under the Act (for example any fair dealing for the purposes of study, research, criticism or review), no part of this book may be reproduced, stored in a retrieval system, communicated or transmitted in any form or by any means without prior written permission. All enquiries should be made to the publisher at the address above.
This book is not to be treated as a blackline master; that is, any photocopying beyond fair dealing requires prior written permission.
Project Leads: Julian Lumb, Natalie Bennett, Jack Sagar, Lindy Sharkey
Development Editor: Anna Pang
Schools Programme Manager: Michelle Th
Production Editors: Maddy Higginson, Jaimi Kuster
Rights \& Permissions Editor: Amirah Fatin Binte Mohamed
Sapi'ee
Illustrators: QBS Learning
Proofreader: Lucy Bates, Scott Vandervalk
Series Design: Watershed Ar
Typesetters: Integra Software Services
Desktop Operator: Jit-Pin Chong
Printed in Australia by Pegasus
ISBN 9780655715917
Pearson Australia Group Pty Ltd ABN 40004245943

Disclaimer

Any internet addresses (URLs) provided for this Student Companion were valid at the time of publication and were chosen as being appropriate for use as a secondary education research tool. However, due to the dynamic nature of the internet, some addresses may have changed, may have ceased to exist since publication, or may inadvertently link to sites with content that could be considered offensive or inappropriate. While the authors and publisher regret any inconvenience this may cause readers, no responsibility for any such changes or unforeseeable errors can be accepted by either Pearson Australia or the authors.

Attributions

COVER: Alamy: Heycock, Amy, bridge; Simsek, Cigdem, atom;
Shutterstock: Aliaksandr, Marko, satellite dish; Demater, drone; Flipser, speedometer; Retouch man, diamond;
Bureau of Meterology: Based on data from © Copyright Commonwealth of Australia, Bureay of Meteorology, p. 161.

Contents

1 Operating with integers, fractions, decimals and percentages 1
Perform operations with integers 1
Apply operations with integers 4
Use common multiples and highest common factors to write and compare equivalent fractions 7
Understand the connection between fractions and decimals 11
Perform operations with fractions 16
Round decimals and apply operations with decimals 19
Understand the connection between decimals, fractions and percentages 23
Apply percentages to solve problems 25
Use percentages in financial calculations
Solve problems involving the use of percentages
2 Pythagoras' theorem 31
Measure the side lengths of a right-angled triangle 31
Understand and use Pythagoras' theorem to identify right-angled triangles 33
Compare different applications, demonstrations and proofs of Pythagoras' theorem 37
Use Pythagoras' theorem to determine the length
of the hypotenuse 41
Use Pythagoras' theorem to determine the length of a shorter side in a right-angled triangle 43
3 Circles: length and area 46
Recognise circle features 46
Understand how circumference is related to radius and diameter 49
Solve length problems involving circles 52
Determine the area of a circle 56
Determine the area of a sector using common fractions 60
Determine sector area and arc length 62
Determine the area of composite shapes involving circles 65
Solve problems inyolving eircle measurements 67
4 Volume 69
Understand volume measured in cubic units 69
Establish the volume formula and
units for prisms 72
Determine the volume of right prisms 75
Explore the connection between volume and capacity 76
Understand the connection between volume and capacity 80
Determine the volume and capacity of cylinders 85
Understand the relationship between the volume and dimensions of cylinders 87
5 Ratios and rates 89
Write ratios 89
Understand equivalent ratios 91
Understand the connection between fractions and ratios 93
Solve practical problems involving ratios of length 96
Explore ratios in measured quantities 100
Solve problems involving proportional reasoning 103
Apply ratios to currency exchange 106

Contents

Understand and apply rates 108
Interpret, discuss and analyse relationships in graphs 110
6 Properties of geometrical figures 115
Construct triangles and quadrilaterals 115
Determine the exterior angle of a triangle 120
Determine the internal angle sum of a triangle 122
Classify types of triangles by their side and angle properties 125
Classify types of quadrilaterals by their side and angle properties 129
Use parallel side lengths of quadrilaterals to construct rectangles of equivalent area 132
7 Data analysis 135
Calculate the mean and range of a set of data 135
Calculate the mean and range for a set of grouped data 138
Determine the median of a data set 142
Choose an appropriate measure of central tendency 145
Determine statistical measures of centre from data displays 147
Interpret and describe numerical data displays 151
Compare sampling methods 154
Understand sampling techniques and data sources 158
Understand and interpret statistics from different samples from the same population 163
8 Linear relationships 169
Understand the components of an equation and how they are combined 169
Generate a table of values using a linear equation 170
points on a Cartesian plane, a table of values and a linear patternModel linear patterns usingmanipulatives, diagrams andgraphs178
Plot and identify a linear relationship using a set of points 180
Graph linear relationships from a rule 183
Graph linear relationships with only one axis intercept 185
Solve linear equations graphically 188
Probability 193
List sample spaces and calculate the probability of single-step events 193
Record outcomes and run trials of chance experiments 196
Compare theoretical and experimental probability 199
Understand complementary events 202

How to use this Student Companion

The Student Companion is a complementary resource that offers a print medium for corresponding lessons in Pearson Secondary Teaching Hub. It is designed to support teaching and learning by providing learners with a place to create a portfolio of learning to suit their individual needs, whether you are:

■ supporting a blended classroom using the strengths of print and digital

- preparing for exams by creating a study guide or bound reference
- needing a tool to differentiate learning or
- looking for meaningful homework tasks.

Learners can develop their portfolio of learning as part of classroom learning or at home as an additional opportunity to engage and re-engage with the knowledge and skills from the lesson.

This could be done as prior learning in a flipped classroom environment or as an additional revision or homework task.

Learning intention and success criteria

Learning intentions are provided for every lesson. The learning intentions are goals or objectives that align to the corresponding digital lesson. They describe what learners should know, understand or be able to do by the end of the lesson

Success criteria clarify expectations and describe what success looks like. The success criteria are specific, concrete and measurable so learners can actively engage with and reflect on their evidence of learning within each lesson.

Worked examples

Worked examples provide learners with a step-by-step solution to a problem. The worked examples in the Student Companion correspond to those in the digital lesson and are provided for each skill to:

- scaffold learning
- support skill acquisition
- reduce the cognitive load.

The worked examples are an effective tool to demonstrate what success looks like. The 'try yourself' format of the worked examples in the Student Companion support the gradual release of responsibility. Learners can view a completed worked example and a video walkthrough of the worked example in the corresponding digital lesson and then apply the scaffolded steps themselves to practise independently.

Practice questions are provided in the Student Companion so that learners can apply the knowledge and skills obtained in the worked example given. These questions are designed to ensure learners build confidence and demonstrate efficiency. They follow on from the Check your understanding questions beside the corresponding worked example in the digital lesson.

Each lesson in the

 Student Companion contains a space for students to reflect on their understanding. The simple and intuitive design of the lesson reflection tool allows students to scale their confidence, reflect on their learning and identify areas in which they need support.Operating with integers, fractions, decimals ave percentages

SC 2: I can add and subtract integers
Worked example: Adding integers
Use the number lines to show the calculations:
(a) $0+(-8)$
(b) $(-8)+1$
(c) $(-8)+(-1)$

(a) $20+(-4)$
(b) $(-8)+11$
(c) $(-6)+(-5)$
(d) $12+(-5)+2$

Worked example: Subtracting integers
Use the number lines to show the calculations:
(a) (-6) -4
(b) $(-6)-(-4)$

Thinking	Working												
To subtract a positive number, face left and step forward. To subtract a negative number, face left and step backward.	(a) (b)												

1 Calculate:
(a) $22-(-15)$
(b) $(-16)-8$
(c) $(-6)-(-5)$
(d) $14-(-5)-9$

Secondary Teaching Hub

Simplify teaching \& energise learning

Discover Pearson Secondary Teaching Hub for years 7 to 10.

Pearson Secondary Teaching Hub has been designed to simplify teaching and energise learning across multiple subjects. Every Secondary Teaching Hub subject offers best-practice learning design delivered in flexible formats for the modern classroom, plus uniquely developed content structures and features for each subject.

This solution provides continuity for students from one class to the next and a rare whole-school view for school leadership while still delivering the rigour and support teachers need to help students meet the specific outcomes of their curriculum area.

Measure the side lengths of a right-angled triangle

Learning intention: To be able to measure the sides of right-angled triangles

Success criteria:

SC 1: I can identify the hypotenuse in a right-angled triangle.
\square SC 2: I can construct and measure the side lengths of a right-angled triangle.

SC 1: I can identify the hypotenuse in a right-angled triangle

Worked example: Identifying the right angle and the hypotenuse

Identify and name the right angle and hypotenuse in this right-angled triangle

Thinking	
Identify the known information.	
Locate the hypotenuse.	
Name the hypotenuse using the vertex labels	
at either end of the side. The yertices are	
usually written in alphabetical order.	

1 Giventhe lengths of sides in each of the following right-angled triangles, identify the length of the hypotenuse.
(a) $5 \mathrm{~mm}, 12 \mathrm{~mm}, 15 \mathrm{~mm}$
(b) $12 \mathrm{~mm}, 20 \mathrm{~mm}, 16 \mathrm{~mm}$
(c) $7.5 \mathrm{~cm}, 6 \mathrm{~cm}, 2.5 \mathrm{~cm}$
(d) Explain how you determined which side length represented the hypotenuse.

Pythagoras' theorem

SC 2: I can construct and measure the side lengths of a right-angled triangle

Worked example: Constructing right-angled triangles given the lengths of two sides

Use a ruler, a protractor and a compass to construct a right-angled triangle as directed. Measure the length of the other side to the nearest millimetre.
(a) The lengths of the two shorter sides are 5.6 cm and 4.2 cm .

Thinking	Working
Draw a horizontal line using the first given length.	
Form a right angle at one end and extend	
the vertical line to the second given	
length.	

(b) The hypotenuse is 8.5 cm and a shorter side is 7.5 cm .

1 Draw a right-angled triangle using the two shorter side lengths listed. In each case, label and measure the hypotenuse.
(a)
$A B=7 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$
(b) $A B=6 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$

Understand and use Pythagoras' theorem to identify right-angled triangles

Learning intention: To be able to understand and use Pythagoras' theorem to identify right-angled triangles

Success criteria:

\square SC 1: I can establish the relationship between the side lengths in a right-angled triangle.
\square SC 2: I can identify and use Pythagorean triples.
\square SC 3: I can recognise the relationship between the squares of lengths of sides for different types of triangles.

SC 1: I can establish the relationship between the side lengths in a right-angled triangle

Worked example: The converse of Pythagoras' theorem

Determine whether or not this triangle is right-angled.

Pythagoras' theorem

1 Consider the right-angled triangle shown.

(a) Complete the table for the right-angled triangles with the side lengths given.

a	b	c	a^{2}	b^{2}	$a^{2}+b^{2}$	c^{2}
15 mm	20 mm	25 mm				
9 cm	12 cm	15 cm				
50 mm	120 mm	130 mm				
8 cm	15 cm	17 cm				

(b) Which variable is used for the hypotentise in each case?
(c) What sort of units do each of the values of a^{2}, b^{2} and c^{2} have?
(d) What is the relationship between $a^{2}+b^{2}$ and c^{2} ?

2 Consider the triangle shown.
(a) Explain why Pythagoras' theorem written as $c^{2}=a^{2}+b^{2}$ does not describe the triangle.

(b) Using Pythagoras' theorem, write a true equation based on the triangle.

SC 2: I can identify and use Pythagorean triples

Worked example: Using Pythagorean triples to solve unknown sides

Use Pythagorean triples to determine the lengths of the unknown side in each right-angled triangle.
(a)

(b)

Thinking	Working
Interpret the information given in the right-angled triangle as a Pythagorean triple.	
Recall the relationship between the three values in a Pythagorean triple.	
Determine the relationship between the values in the Pythagorean triple.	
Determine the value of the variable.	
Interpret the answer.	

Thinking	Working
Interpret the information given in the right-angled triangle as a Pythagorean triple Recall the relationship between the three values in a Pythagorean triple. Determine the relationship between the values in the Pythagorean triple.	
Determine the value ofthe variable.	
Interpret the answer.	

This list of Pythagorean triples will be helpful for the following questions.
$(3,4,5),(5,12,13),(7,24,25),(8,15,17),(9,40,41),(12,35,37),(20,21,29)$
1 Use the Pythagorean triples from the list to determine the length of the hypotenuse, given the lengths of the two shorter sides.
(a) $15 \mathrm{~cm}, 20 \mathrm{~cm}$
(c) $16 \mathrm{~km}, 30 \mathrm{~km}$

(b) $21 \mathrm{~m}, 72 \mathrm{~m}$
\qquad
\qquad
\qquad

2 Use the Pythagorean triple $(12,35,37)$ to determine the unknown side length, given the length of the hypotenuse and another side.
(a) $24 \mathrm{~m}, 74 \mathrm{~m}$
(b) $70 \mathrm{~m}, 74 \mathrm{~m}$
(c) $36 \mathrm{~m}, 111 \mathrm{~m}$

Pythagoras' theorem

SC 3: I can recognise the relationship between the squares of lengths of sides for different types of triangles

Worked example: Classifying triangles with angle names

Two shorter sides of a triangle are 3 cm and 4 cm .
Match the length of the longest side ($4.5 \mathrm{~cm}, 5 \mathrm{~cm}, 5.5 \mathrm{~cm}$) to the triangle it represents (acute, right-angled, obtuse).

Thinking	Working
Determine the sum of the squares of the two shorter sides.	
Determine the length of the hypotenuse of a right-angled triangle.	
Use the length of the hypotenuse to classify the other side lengths.	
Draw a conclusion.	

1 The two shorter sides of a triangle are 7 cm and 24 cm . Give a third possible side length that would form:

(a) an acute-angled triangle
(b) a right-angled triangle
(c) an obtuse-angled triangle.
\qquad
2 Use the Pythagorean triple $(5,12,13)$ to classify the triangles with the side lengths listed as either acute-angled or obtuse-angled triangles.
(a) $(5,12,12)$
(b) $(5,12,14)$
(c) $(10,23,26)$

Compare different applications, demonstrations and proofs of Pythagoras' theorem

Learning intention: To be able to compare different applications, demonstrations and proofs of Pythagoras' theorem

Success criteria:

\square SC 1: I can demonstrate and prove Pythagoras' theorem using a square shape.
\square SC 2: I can use Pythagoras' theorem for similar shapes on the sides of right-angled triangles.

SC 1: I can demonstrate and prove Pythagoras' theorem using a square shape

Worked example: Illustrating the geometric proof using a grid

Demonstrate Pythagoras' theorem using squares on grid paper using the-Pythagorean triple $(5,12,13)$.

Thinking	Working
On grid paper, draw the large square to the required size. Draw the right-angled triangle at each corner so that a square is left in the middle.	
Determine the dimensions of the large square.	
Determine the area of the inside square.	

Thinking
Draw four copies of the right-angled triangle arranged as two pairs of rectangles so that two squares are left at opposite corners.

1 Use a square with side lengths of 7 units drawn on grid paper to complete the proof of Pythagoras' theorem with a $(3,4,5)$ triangle.
(a) Use grid paper to draw right-angled triangles with side lengths $(3,4,5)$.

Pythagoras' theorem

(b) Calculate the area of the centre square.
(c) Rearrange the right-angled triangles to form two squares.

(d) Use your answer to part (c) to demonstrate that the sum of the squares of the two shorter sides is equal to the square of the hypotenuse.

2 Another pair of square diagrams that illustrate Pythagoras' theorem are given below.

(a) For a right-angled triangle with hypotenuse c and shorter sides a and b, what is the side length in both of the two larger squares?
(b) On grid paper, illustrate this method of proof using the Pythagorean triple $(6,8,10)$.

SC 2: I can use Pythagoras' theorem for similar shapes on the sides of right-angled triangles

Worked example: Using Pythagoras' theorem with similar shapes built on the sides of right-angled triangles

The right-angled triangle shown has a shape based on the $(3,4,5)$ Pythagorean triple.
The hypotenuse is 10 cm long, and the rectangle on the hypotenuse has an area of $80 \mathrm{~cm}^{2}$.

Given that the three rectangles are similar, and all have a longer side along the side of the triangle, determine:
(a) the value of k in $k c^{2}=k a^{2}+k b^{2}$

Thinking	Working
Use the length of the hypotenuse as c and the area of the rectangle on the hypotenuse as $k c^{2}$.	
Explain the meaning of the value of k.	

(b) the lengths of the shorter sides of the triangle

Thinking	Working
Use the ratio $3: 4: 5$ to determine the scale factor.	
Interpret the answer.	

(c) the areas of the smatler two rectangles

Thinking	Working
Use $k a^{2}, k b^{2}$ and $k c^{2}$ as the areas.	

(d) the width of each rectangle.

Thinking	Working
Use $A=l w$ for each rectangle.	

Pythagoras' theorem

1 A right-angled triangle has shorter side lengths of 30 mm and 40 mm .
Rectangles with lengths of double their widths are built onto each side, with the width along the side of the triangle in each case. Determine:
(a) the length of the hypotenuse \qquad
(b) the length of each rectangle \qquad
(c) the area of each rectangle \qquad
(d) the value of k in $k c^{2}=k a^{2}+k b^{2}$. \qquad

(b) the height of the other similar triangles

(c) the area of each similar triangle
\qquad

(d) the value of k in $k c^{2}=k a^{2}+k b^{2}$. \qquad
\qquad
\qquad

Use Pythagoras' theorem to determine the length of the hypotenuse

Learning intention: To be able to use Pythagoras' theorem to determine the length of the hypotenuse

Success criteria:

\square SC 1: I can use Pythagoras' theorem to determine the length of a hypotenuse.
\square SC 2: I can solve problems involving determining the length of a hypotenuse.
SC 1: I can use Pythagoras' theorem to determine the length of a hypotenuse
Worked example: Calculating the length of the hypotenuse
Calculate the length of the hypotenuse.

Thinking	Working
Use a pronumeral to represent the length of the unknown side.	
Write an equation for Pythagoras' theorem in terms of the given values.	
Solve for the unknown.	
Write the answer in words with appropriate units.	
Check that the answer is reasonable.	

1 Calculate the length of the hypotenuse in each right-angled triangle. Round your answers to 2 decimal places where necessary.
(a)

(b)

(c)

Pythagoras' theorem

SC 2: I can solve problems involving determining the length of a hypotenuse

Worked example: Determining the length of the hypotenuse by first forming a right-angled triangle

Determine the unknown side length, correct to the nearest centimetre.

1 Determine the perimeter of the symmetrical shape shown, correct to the nearest millimetre.

2 Determine the length of the sides marked with a pronumeral. Write your answers correct to 1 decimal place
(a)

(b)

Use Pythagoras' theorem to determine the length of a shorter side in a right-angled triangle

Learning intention: To be able to use Pythagoras' theorem to determine the length of a shorter side in a right-angled triangle

Success criteria:

\square SC 1: I can rearrange Pythagoras' theorem to determine the length of a shorter side of a right-angled triangle.
\square SC 2: I can solve problems using Pythagoras' theorem.
SC 1: I can rearrange Pythagoras' theorem to determine the length of a shorter side of a right-angled triangle

Worked example: Calculating the length of a shorter side in a right-angled triangle
Determine the length of the unknown side.

Thinking	In the diagram given, label the unknown length with
a pronumeral.	
Label the two shorter side lengths a and b. Label the hypotenuse c.	
Write an equation for Pythagoras' theorem interms of the given values. Note: Subtraction is used since the unknown side must be shorter than the hypotenuse.	
Solve for the unknown.	

1 Calculate the lengths of the unknown sides. Round your answers to the nearest millimetre where required.
(a)

(b)

Pythagoras' theorem

(d)

2 Determine the values of the pronumerals, correct to two decimal places.

3 Determine the height of the quadrilateral shown, correct to one decimal place.

SC 2: I can solve problems using Pythagoras' theorem

Worked example: Solving a described problem by first drawing a right-angled triangle

A ladder measuring 2.7 m is leaning against a wall with its base 110 cm from the wall. How high up the wall does the ladder reach? Give your answer in metres, correct to the nearest centimetre.

Thinking	Working
Draw a right-angled triangle using the wall and ground as the natural right angle. Ensure units are the same. Identify and mark the unknown length with a suitable pronumeral.	
Substitute the values into Pythagoras' theorem.	
Solve for the unknown.	
Interpret and present the answer in words with appropriate units, rounding as directed.	
Check that the answer is reasonable.	

1 A taut 3.2 m guy rope stretches from a peg on the ground to the top of 1.7 m-tall vertical tent pole.
How far is the peg from the base of the tent pole, to the nearest centimetre?

2 A symmetrical timber roof frame is constructed as shown.
Calculate the total length of timber used to construct this symmetrical roof frame, accurate to the nearest centimetre.

[^0]: Pearson acknowledges the Traditional Custodians of the lands upon which the many schools throughout Australia are located.

 We respect the living cultures of Aboriginal and Torres Strait Islander peoples and their ongoing connection to Country across lands, sky, seas, waterways and communities. We celebrate the richness of Indigenous Knowledge systems, shared with us and with schools Australia-wide.

