

YEAR

NSW VILABUS

STUDENT COMPANION NSW

Pearson Seconda Teach Maths SW **Student Companion**

Contributing authors:

Greg Carroll, David Coffey, Grace Jefferson, Garthe Jones, Diane Oliver, Shaun Oliver, Sarah Plummer and Nicola Silva

Pearson acknowledges the Traditional Custodians of the lands upon which the many schools throughout Australia are located.

We respect the living cultures of Aboriginal and Torres Strait Islander peoples and their ongoing connection to Country across lands, sky, seas, waterways and communities. We celebrate the richness of Indigenous Knowledge systems, shared with us and with schools Australia-wide.

We pay our respects to Elders, past and present.

Pearson Australia

(a division of Pearson Australia Group Pty Ltd) 459–471 Church Street Level 1, Building B Richmond, Victoria 3121 www.pearson.com.au

Copyright © Pearson Australia 2024 (a division of Pearson Australia Group Pty Ltd) First published 2024 by Pearson Australia 2027 2026 2025 2024

10 9 8 7 6 5 4 3 2 1

Reproduction and communication for educational purposes

The Australian *Copyright Act 1968* (the Act) allows a maximum of one chapter or 10% of the pages of this work, whichever is the greater, to be reproduced and/or communicated by any educational institution for its educational purposes provided that that educational institution (or the body that administers it) has given a remuneration notice to the Copyright Agency under the Act. For details of the copyright licence for educational institutions contact the Copyright Agency (www.copyright.com.au).

Reproduction and communication for other purposes

Except as permitted under the Act (for example any fair dealing for the purposes of study, research, criticism or review), no part of this book may be reproduced, stored in a retrieval system, communicated or transmitted in any form or by any means without prior written permission. All enquiries should be made to the publisher at the address above.

This book is not to be treated as a blackline master; that is, any photocopying beyond fair dealing requires prior written permission.

Project Leads: Julian Lumb, Natalie Bennett, Jack Sagar, Lindy Sharkey Development Editor: Anna Pang Schools Programme Manager: Michelle Thomas

Production Editors: Maddy Higginson, Jaimi Kuster Rights & Permissions Editor: Amirah Fatin Binte Mohamed Sapi'ee Illustrators: QBS Learning Proofreader: Lucy Bates, Scott Vandervalk Series Design: Watershed Art

Typesetters: Integra Software Service Desktop Operator: Jit-Pin Chong

Printed in Australia by Pegasus

ISBN 978 0 6557 1591

Pearson Australia Group Pty Ltd ABN 40 004 245 943

Disclaimer

Any internet addresses (URLs) provided for this Student Companion were valid at the time of publication and were chosen as being appropriate for use as a secondary education research tool. However, due to the dynamic nature of the internet, some addresses may have changed, may have ceased to exist since publication, or may inadvertently link to sites with content that could be considered offensive or inappropriate. While the authors and publisher regret any inconvenience this may cause readers, no responsibility for any such changes or unforeseeable errors can be accepted by either Pearson Australia or the authors.

Attributions

COVER: Alamy: Heycock, Amy, bridge; Simsek, Cigdem, atom; **Shutterstock:** Aliaksandr, Marko, satellite dish; Demater, drone; Flipser, speedometer; Retouch man, diamond;

Bureau of Meterology: Based on data from © Copyright Commonwealth of Australia, Bureau of Meteorology, p. 161.

1	Operating with integers, fractions, decimals and percentages	1
	Perform operations with integers	1
	Apply operations with integers	4
	Use common multiples and highest common factors to write and compare equivalent fractions	7
	Understand the connection between fractions and decimals	11
	Perform operations with fractions	16
	Round decimals and apply operations with decimals	19
	Understand the connection between decimals, fractions and percentages	23
	Apply percentages to solve problems	25
	Use percentages in financial calculations	27
	Solve problems involving the use of percentages	29
2	Pythagoras' theorem	31
	Measure the side lengths of a right-angled triangle Understand and use Pythagoras'	31
	theorem to identify right-angled triangles Compare different applications,	33
	demonstrations and proofs of Pythagoras' theorem Use Pythagoras' theorem to	37
	determine the length of the hypotenuse	41
	Use Pythagoras' theorem to determine the length of a shorter side in a right-angled triangle	43
3	Circles: length and area	46
	Recognise circle features	46
	•	

	Solve length problems involving circles	52
	Determine the area of a circle	56
	Determine the area of a sector using common fractions	60
	Determine sector area and arc length	62
	Determine the area of composite shapes involving circles	65
	Solve problems involving circle measurements	67
•••••		• • • • • • •
4	Volume	69
	Understand volume measured in cubic units	69
	Establish the volume formula and units for prisms	72
X	Determine the volume of right prisms	75
	Explore the connection between volume and capacity	76
	Understand the connection between volume and capacity	80
	Determine the volume and capacity of cylinders	85
	Understand the relationship between the volume and dimensions of cylinders	87
5	Ratios and rates	89
	Write ratios	89
	Understand equivalent ratios	91
	Understand the connection between fractions and ratios	93
	Solve practical problems involving ratios of length	96
	Explore ratios in measured quantities	100
	Solve problems involving proportional reasoning	103
	Apply ratios to currency exchange	106

Copyright © Pearson Australia 2024 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 1591 7

Contents

	Understand and apply rates	108
	Interpret, discuss and analyse relationships in graphs	110
6	Properties of geometrical figures	115
	Construct triangles and quadrilaterals	115
	Determine the exterior angle of a triangle	120
	Determine the internal angle sum of a triangle	122
	Classify types of triangles by their side and angle properties	125
	Classify types of quadrilaterals by their side and angle properties	129
	Use parallel side lengths of quadrilaterals to construct rectangles of equivalent area	132
7	Data analysis	135
7	Data analysis Calculate the mean and range of a set of data	135 135
7	Data analysis Calculate the mean and range of a set of data Calculate the mean and range for a set of grouped data	135 135 138
7	Data analysis Calculate the mean and range of a set of data Calculate the mean and range for a set of grouped data Determine the median of a data set	135 135 138 142
7	Data analysis Calculate the mean and range of a set of data Calculate the mean and range for a set of grouped data Determine the median of a data set Choose an appropriate measure of central tendency	135 135 138 142 145
7	Data analysis Calculate the mean and range of a set of data Calculate the mean and range for a set of grouped data Determine the median of a data set Choose an appropriate measure of central tendency Determine statistical measures of centre from data displays	135 135 138 142 145 147
7	Data analysis Calculate the mean and range of a set of data Calculate the mean and range for a set of grouped data Determine the median of a data set Choose an appropriate measure of central tendency Determine statistical measures of centre from data displays Interpret and describe numerical data displays	135 135 138 142 145 147 151
7	Data analysis Calculate the mean and range of a set of data Calculate the mean and range for a set of grouped data Determine the median of a data set Choose an appropriate measure of central tendency Determine statistical measures of centre from data displays Interpret and describe numerical data displays Compare sampling methods	135 135 138 142 145 147 151 154
7	Data analysis Calculate the mean and range of a set of data Calculate the mean and range for a set of grouped data Determine the median of a data set Choose an appropriate measure of central tendency Determine statistical measures of centre from data displays Interpret and describe numerical data displays Compare sampling methods Understand sampling techniques and data sources	135 135 138 142 145 147 151 154 158

from the same population

8	Linear relationships	169
	Understand the components of an equation and how they are combined	169
	Generate a table of values using a linear equation	170
	Recognise the connection between points on a Cartesian plane, a table of values and a linear pattern	174
	Model linear patterns using manipulatives, diagrams and graphs	178
	Plot and identify a linear relationship using a set of points	180
	Graph linear relationships from a rule	183
	Graph linear relationships with only one axis intercept	185
	Solve linear equations graphically	188
9	Probability	193
	List sample spaces and	

Pro	bability	193

List sample spaces and calculate the probability of single-step events	193
Record outcomes and run trials of chance experiments	196
Compare theoretical and experimental probability	199
Understand complementary events	202

163

How to use this Student Companion

The *Student Companion* is a complementary resource that offers a print medium for corresponding lessons in *Pearson Secondary Teaching Hub*. It is designed to support teaching and learning by providing learners with a place to create a portfolio of learning to suit their individual needs, whether you are:

- supporting a blended classroom using the strengths of print and digital
- preparing for exams by creating a study guide or bound reference
- needing a tool to differentiate learning or
- looking for meaningful homework tasks.

Learners can develop their portfolio of learning as part of classroom learning or at home as an additional opportunity to engage and re-engage with the knowledge and skills from the lesson.

This could be done as prior learning in a flipped classroom environment or as an additional revision or homework task.

Learning intention and success criteria

Learning intention: To be able to perform operations with integers

- Success criteria:
- SC 1: I can locate and compare integers.
- SC 2: I can add and subtract integers. SC 3: I can multiply and divide integers.

SC 1: I can locate and compare integers

Worked example: Plotting, ordering, and comparing integers

Use the integers 24, -5, 13, 2, 0, 9 and -10 to answer the following questions.

Learning intentions are provided for every lesson. The learning intentions are goals or objectives that align to the corresponding digital lesson. They describe what learners should know, understand or be able to do by the end of the lesson. **Success criteria** clarify expectations and describe what success looks like. The success criteria are specific, concrete and measurable so learners can actively engage with and reflect on their evidence of learning within each lesson.

Worked examples

Worked examples provide learners with a step-by-step solution to a problem. The worked examples in the *Student Companion* correspond to those in the digital lesson and are provided for each skill to:

- scaffold learning
- support skill acquisition
- reduce the cognitive load.

The **worked examples** are an effective tool to demonstrate what success looks like. The 'try yourself' format of the worked examples in the *Student Companion* support the gradual release of responsibility. Learners can view a completed worked example and a video walkthrough of the worked example in the corresponding digital lesson and then apply the scaffolded steps themselves to practise independently.

Copyright © Pearson Australia 2024 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 1591 7

Simplify teaching & energise learning

Discover Pearson Secondary Teaching Hub for years 7 to 10.

Pearson Secondary Teaching Hub has been designed to simplify teaching and energise learning across multiple subjects. Every *Secondary Teaching Hub* subject offers best-practice learning design delivered in flexible formats for the modern classroom, plus uniquely developed content structures and features for each subject.

This solution provides continuity for students from one class to the next and a rare whole-school view for school leadership while still delivering the rigour and support teachers need to help students meet the specific outcomes of their curriculum area.

Discover Pearson Secondary Teaching Hub pearson.com.au/teaching-hub

Measure the side lengths of a right-angled triangle

Learning intention: To be able to measure the sides of right-angled triangles

Success criteria:

- - SC 1: I can identify the hypotenuse in a right-angled triangle.
 - SC 2: I can construct and measure the side lengths of a right-angled triangle.

SC 1: I can identify the hypotenuse in a right-angled triangle

Work	red example: Identifying the right angle and the hypotenuse
Identif	y and name the right angle and hypotenuse in this right-angled triangle.
	$ \begin{array}{c} B \\ 5 \text{ cm} \\ A \\ \hline 3.75 \text{ cm} \\ \end{array} $
Think	ing Working
Identi	fy the known information.
Locat	e the hypotenuse.
Name	e the hypotenuse using the vertex labels
at eith	ner end of the side. The vertices are
usuai	
Locat	e the right angle.
Name	e the angle.
1 Giv the	en the lengths of sides in each of the following right-angled triangles, identify the length of hypotenuse.
(a)	5 mm, 12 mm, 15 mm
(b)	12 mm, 20 mm, 16 mm
(c)	7.5 cm, 6 cm, 2.5 cm
(d)	Explain how you determined which side length represented the hypotenuse.

SC 2: I can construct and measure the side lengths of a right-angled triangle

Worked example: Constructing right-angled triangles given the lengths of two sides

Use a ruler, a protractor and a compass to construct a right-angled triangle as directed. Measure the length of the other side to the nearest millimetre.

(a) The lengths of the two shorter sides are $5.6 \,\mathrm{cm}$ and $4.2 \,\mathrm{cm}$.

Thinking	Working
Draw a horizontal line using the first given length. Form a right angle at one end and extend the vertical line to the second given length	
Join the ends of the horizontal and vertical lines to form the hypotenuse. Measure the length of the hypotenuse to the nearest millimetre and write it on the diagram.	
(b) The hypotenuse is 8.5 cm and a shorte	r side is 7.5 cm.
Thinking	Working
Draw a horizontal line using the given shorter side length. Form a right angle at one end and draw an extended vertical line.	
From the other end of the horizontal line, draw the hypotenuse the required length to just meet the vertical line (extended, if necessary).	
Measure the length of the vertical side	

1 Draw a right-angled triangle using the two shorter side lengths listed. In each case, label and measure the hypotenuse.

(a)
$$AB = 7 \text{ cm} \text{ and } AC = 5 \text{ cm}$$

(b) AB = 6 cm and BC = 5 cm

Understand and use Pythagoras' theorem to identify right-angled triangles

Learning intention: To be able to understand and use Pythagoras' theorem to identify right-angled triangles

Success criteria:

- SC 1: I can establish the relationship between the side lengths in a right-angled triangle.
- SC 2: I can identify and use Pythagorean triples.
- SC 3: I can recognise the relationship between the squares of lengths of sides for different types of triangles.
- SC 1: I can establish the relationship between the side lengths in a right-angled triangle

Worked example: The converse of Pythagoras' theorem

Determine whether or not this triangle is right-angled.

Thinking	Working
Recall Pythagoras' theorem.	
Identify the two shorter side lengths.	
Determine the sum of the squares of the two shorter side lengths.	
Identify the longest side length.	
Determine the square of the longest side length.	
Compare the sum of the squares of the two shorter sides with the square of the longest side length.	
Write a conclusion.	

1 Consider the right-angled triangle shown.

(a) Complete the table for the right-angled triangles with the side lengths given.

а	b	С	a^2	b^2 $a^2 + b^2$	c^2
15 mm	20 mm	25 mm			
9 cm	12 cm	15 cm	•		
50 mm	120 mm	130 mm			
8 cm	15 cm	17 cm			

- (b) Which variable is used for the hypotenuse in each case?
- (c) What sort of units do each of the values of a^2 , b^2 and c^2 have?
- (d) What is the relationship between $a^2 + b^2$ and c^2 ?

2 Consider the triangle shown.

(a) Explain why Pythagoras' theorem written as $c^2 = a^2 + b^2$ does not describe the triangle.

(b) Using Pythagoras' theorem, write a true equation based on the triangle.

SC 2: I can identify and use Pythagorean triples

Worked example: Using Pythagorean triples to solve unknown sides

Use Pythagorean triples to determine the lengths of the unknown side in each right-angled triangle.

Thinking	Working	Thinking	Working
Interpret the information given in the right-angled triangle as a Pythagorean triple.		Interpret the information given in the right-angled triangle as a Pythagorean triple.	
Recall the relationship between the three values in a Pythagorean triple.		Recall the relationship between the three values in a Pythagorean triple.	2
Determine the relationship between the values in the Pythagorean triple.		Determine the relationship between the values in the Pythagorean triple.	
Determine the value of the variable.		Determine the value of the variable.	
Interpret the answer.		Interpret the answer.	

This list of Pythagorean triples will be helpful for the following questions.

(3,4,5), (5,12,13), (7,24,25), (8,15,17), (9,40,41), (12,35,37), (20,21,29)

1 Use the Pythagorean triples from the list to determine the length of the hypotenuse, given the lengths of the two shorter sides.

(a) 15 cm, 20 cm	(b) 21 m, 72 m	(c) 16 km, 30 km
C		

- 2 Use the Pythagorean triple (12, 35, 37) to determine the unknown side length, given the length of the hypotenuse and another side.
 - (a) 24 m, 74 m

(b) 70 m, 74 m

(c) 36 m, 111 m

RATE MY LEARNING	I need some help	I am getting there	I get it	I am confident

Copyright © Pearson Australia 2024 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 1591 7

SC 3: I can recognise the relationship between the squares of lengths of sides for different types of triangles

Worked example: Classifying triangles with angle names

Two shorter sides of a triangle are 3 cm and 4 cm. Match the length of the longest side (4.5 cm, 5 cm, 5.5 cm) to the triangle it represents (acute, right-angled, obtuse).

Thinking	Working
Determine the sum of the squares of the two shorter sides.	
Determine the length of the hypotenuse of a right-angled triangle.	<u> </u>
Use the length of the hypotenuse to classify the other side lengths.	
Draw a conclusion.	

1 The two shorter sides of a triangle are 7 cm and 24 cm. Give a third possible side length that would form:

2 Use the Pythagorean triple (5, 12, 13) to classify the triangles with the side lengths listed as either acute-angled or obtuse-angled triangles.

(a) (5, 12, 12) (b) (5, 12, 14) (c) (10, 23, 26)

Compare different applications, demonstrations and proofs of Pythagoras' theorem

Learning intention: To be able to compare different applications, demonstrations and proofs of Pythagoras' theorem

Success criteria:

SC 1: I can demonstrate and prove Pythagoras' theorem using a square shape.

SC 2: I can use Pythagoras' theorem for similar shapes on the sides of right-angled triangles.

SC 1: I can demonstrate and prove Pythagoras' theorem using a square shape

Worked example: Illustrating the geometric proof using a grid

Demonstrate Pythagoras' theorem using squares on grid paper using the Pythagorean

triple (5,12,13).

- 1 Use a square with side lengths of 7 units drawn on grid paper to complete the proof of Pythagoras' theorem with a (3,4,5) triangle.
 - (a) Use grid paper to draw right-angled triangles with side lengths (3,4,5).

- (b) Calculate the area of the centre square.
- (c) Rearrange the right-angled triangles to form two squares.

(d) Use your answer to part (c) to demonstrate that the sum of the squares of the two shorter sides is equal to the square of the hypotenuse.

2 Another pair of square diagrams that illustrate Pythagoras' theorem are given below.

- (a) For a right-angled triangle with hypotenuse *c* and shorter sides *a* and *b*, what is the side length in both of the two larger squares?
- (b) On grid paper, illustrate this method of proof using the Pythagorean triple (6,8,10).

]							
]							

 RATE MY LEARNING
 I need some help
 I am getting there
 I get it
 I am confident

SC 2: I can use Pythagoras' theorem for similar shapes on the sides of right-angled triangles

Worked example: Using Pythagoras' theorem with similar shapes built on the sides of right-angled triangles

The right-angled triangle shown has a shape based on the (3,4,5) Pythagorean triple.

The hypotenuse is 10 cm long, and the rectangle on the hypotenuse has an area of 80 cm^2 .

Given that the three rectangles are similar, and all have a longer side along the side of the triangle, determine:

(a) the value of k in $kc^2 = ka^2 + kb^2$

Thinking	Working
Use the length of the hypotenuse as c and the area of the rectangle on the hypotenuse as kc^2 .	
Explain the meaning of the value of k.	

(b) the lengths of the shorter sides of the triangle

Thinking	Working
Use the ratio $3:4:5$ to determine the scale factor.	
Interpret the answer.	

(c) the areas of the smaller two rectangles

Thinking	Working
Use ka^2 , kb^2 and kc^2 as the areas.	

(d) the width of each rectangle.

Working

1 A right-angled triangle has shorter side lengths of 30 mm and 40 mm. Rectangles with lengths of double their widths are built onto each side, with the width along the side of the triangle in each case. Determine:

	(a)	the length of the hypotenuse
	(b)	the length of each rectangle
	(c)	the area of each rectangle
	(d)	the value of k in $kc^2 = ka^2 + kb^2$.
2	A riq Pytł	ght-angled triangle's shape is based on the $(3,4,5)$ hagorean triple, with a hypotenuse of 20 cm.
	Thre long triar hype	ee similar triangles are built onto the sides with the gest side of each triangle attached to the right-angled ngle in each case. The height of the triangle on the otenuse is 18 cm.
	Dete	ermine:
	(a)	the lengths of the two shorter sides of the right-angled triangle
	(b)	the height of the other similar triangles
	(c)	the area of each similar triangle
	(d)	the value of k in $kc^2 = ka^2 + kb^2$.

Use Pythagoras' theorem to determine the length of the hypotenuse

Learning intention: To be able to use Pythagoras' theorem to determine the length of the hypotenuse

Success criteria:

SC 1: I can use Pythagoras' theorem to determine the length of a hypotenuse.

SC 2: I can solve problems involving determining the length of a hypotenuse.

SC 1: I can use Pythagoras' theorem to determine the length of a hypotenuse

Worked example: Calculating the length of the hypotenuse

Calculate the length of the hypotenuse.

	24 cm
Thinking	Working
Use a pronumeral to represent the length of the unknown side.	
Write an equation for Pythagoras' theorem in terms of the given values.	
Solve for the unknown.	
Write the answer in words with appropriate units.	
Check that the answer is reasonable.	

7 cm

1 Calculate the length of the hypotenuse in each right-angled triangle. Round your answers to 2 decimal places where necessary.

SC 2: I can solve problems involving determining the length of a hypotenuse

Worked example: Determining the length of the hypotenuse by first forming a right-angled triangle 12 cm

Determine the unknown side length, correct to the nearest centimetre.

Thinking	Working
Draw a vertical line on the diagram given to form a right-angled triangle.	
Determine the length of the two shorter sides in the right-angled triangle by matching with known lengths, or by simple subtraction. Write the lengths on the diagram.	
Substitute the known lengths into Pythagoras' theorem, $c^2 = a^2 + b^2$.	
Solve for the unknown side length.	2
Write the answer in words, with units, rounding as instructed.	
1 Determine the perimeter of the symmetrical shape	e shown, <u>14 cm</u>

correct to the nearest millimetre.

2 Determine the length of the sides marked with a pronumeral. Write your answers correct to 1 decimal place.

Use Pythagoras' theorem to determine the length of a shorter side in a right-angled triangle

Learning intention: To be able to use Pythagoras' theorem to determine the length of a shorter side in a right-angled triangle

Success criteria:

- SC 1: I can rearrange Pythagoras' theorem to determine the length of a shorter side of a right-angled triangle.
- SC 2: I can solve problems using Pythagoras' theorem.

SC 1: I can rearrange Pythagoras' theorem to determine the length of a shorter side of a right-angled triangle

Worked example: Calculating the length of a shorter side in a right-angled triangle

Determine the length of the unknown side.

Thinking	Working
In the diagram given, label the unknown length with a pronumeral.	
Label the two shorter side lengths a and b . Label the hypotenuse c .	8 cm
Write an equation for Pythagoras' theorem in terms of the given values.	
Note: Subtraction is used since the unknown side must be shorter than the hypotenuse.	
Solve for the unknown.	
Write the answer in words with appropriate units.	

1 Calculate the lengths of the unknown sides. Round your answers to the nearest millimetre where required.

SC 2: I can solve problems using Pythagoras' theorem

Worked example: Solving a described problem by first drawing a right-angled triangle

A ladder measuring 2.7 m is leaning against a wall with its base 110 cm from the wall. How high up the wall does the ladder reach? Give your answer in metres, correct to the nearest centimetre.

