1:01) Numbers Above One Million

Content strand: Number and Algebra
Sub-strand: Number and place value
Content description:

- Apply place value to partition, rearrange and regroup numbers to at least tens of thousands to assist calculations and solve problems. [Progression]

Teaching Suggestions

- Demonstrate numbers above one hundred million.
- Provide students with frequent opportunities to read and write any number presented verbally.
- Revise place value, e.g. the value of the 6 in 216439251 is 6 millions (6000000).
- Revise rounding, i.e. digits 5 and above are rounded up while digits below 5 are rounded down.
- Revise powers of ten, e.g. 1643786 is $\left(1 \times 10^{6}\right)+$ $\left(6 \times 10^{5}\right)+\left(4 \times 10^{4}\right)+\left(3 \times 10^{3}\right)+\left(7 \times 10^{2}\right)+$ $\left(8 \times 10^{1}\right)+6$.

Investigation

- The best strategy to use for this exercise is Guess and Check.
- Have students work in pencil and erase any guesses that do not satisfy the requirements of the exercise.
- Encourage students to check a final time when all of the digits have been used.

[^0]
Extension Work

- Use powers of ten to write each numeral in Question 3.

Language

numeral, expanded notation, powers of ten, place value, hundred millions, ten millions, millions, hundred thousands, ten thousands, thousands, hundreds, tens, units, numeral expander

Resources

- pencil, eraser
- spare paper

Cross-reference

See also: p. 7
Year 5 p. 2

Evaluation

Is the student able to do following?

- apply place value to partition, rearrange and regroup numbers to at least tens of thousands to assist
Answers
(1) a 49760621
b 83132549
(2) a 4 hundreds of thousands
b 3 millions
c 6 tens of thousands
d 9 tens of millions
e 7 millions
f 5 millions
(3) a $26349721 ; 43296714 ; 62419637$
b 56811769; 63497624; 65375670
c $17634658 ; 32693475 ; 41623912$
4
5

b

b 30000000
c 40000000
5 a

1:02 Square Numbers

Content strand: Number and Algebra
Sub-strand: Number and place value
Content description:

- Identify and describe properties of prime, composite, square and triangular numbers.

Teaching Suggestions

1:02 (p. 2) and 1:03 (p. 3) could be treated in the same lesson, as they both deal with the same concept.

- Discuss the features of a square.
- In Question 1, demonstrate on the board how to draw a square. How long is the line? Draw perpendicular lines of the same length above and at each end of the line. Draw in the fourth side.
- Multiplication facts should be used to determine answers as the little squares form an array.
- Cut squares of varying size from 1 cm grid paper (BLM 12, p. 206). Count the number of small squares to find the square numbers.

Extension Work

- Continue the pattern:

$1 \times 1=1$	$5 \times 5=$
$2 \times 2=$	$6 \times 6=$
$3 \times 3=$	$7 \times 7=$
$4 \times 4=$	

Answers

| (1) | 25 | b 49 | c 36 |
| :--- | :--- | :--- | :--- | :--- |
| d 16 | e 9 | f | 64 |

(2) a 9
b a square

(3) $1,4,9,16,25,36,49,64,81,100$
(4) Answers can vary. (Some are 121, 144, 169, 196, 225, 256 and 289.)
(5) Counters representing square numbers can be arranged in the shape of a square.

1:03 Square Numbers

Content strand: Number and Algebra
Sub-strand: Number and place value
Content description:

- Identify and describe properties of prime, composite, square and triangular numbers.

Teaching Suggestions

- Provide each student with a hundred square. Have students cut off a square of their choice, e.g. $6 \mathrm{~cm} \times$ 6 cm . Ask them to place a place-value one on each part of this square and count the ones. List the numbers discovered by the students. Call these square numbers.
- Find all factors of each square number by rearranging the place-value ones of each square into other rectangles. Students could colour squares of different sizes (e.g. $1 \mathrm{~cm} \times 1 \mathrm{~cm}, 2 \mathrm{~cm} \times 2 \mathrm{~cm}, 3 \mathrm{~cm} \times 3 \mathrm{~cm}$) on 1 cm grid paper (BLM 12, p. 206).
- Explain that a square number has other factors of which it is a multiple.
- Ask students to write square numbers as numbers squared, e.g. 25 can be written as 5×5 or five squared.

Extension Work

- Investigate larger square numbers with grid paper and calculators.
- Have students colour the square numbers on a multiplication grid and comment on the patter
- BLW 5 Square Numbers, p. 215, could be given

Language

square number, five squared, factor, multiple, product, odd numbers, even numbers

Resources

- hundred squares
- place-value ones
- multiplication grids
- calculators
- 1 cm grid paper (BLM 12, p. 206)
- BLW 5 Square Numbers, p. 215

Cross-reference

See also: p. 2
Year 5 p. 91

Evaluation

Is the student able to do the following?

- find multiples and squares of numbers

Answers

Concept

$25=5 \times 5,36=6 \times 6$
(1) a 25 b $36 \quad$ c 49
d 64 e 81 f 100
g 4 h 16 i 49 j 9
k 36 I 100 m 1 n 64
(2) a $+11,+13,+15,+17,+19$
b 121,144
c $4,16,36,64,100$
(3) a 3 squared b 5 squared
c 4 squared d 6 squared
(4) a $1,25,5 \quad$ b $1,9,3 \quad$ c $1,49,7$
d $1,4,2$ e $1,16,2,8,4$

1:04 Percentages

Content strand: Number and Algebra
Sub-strand: Fractions and decimals
Content description:

- Make connections between equivalent fractions, decimals and percentages.

Teaching Suggestions

1:04 (p. 4) and 1:05 (p. 5) could be treated in the same lesson, as they both deal with the same concept.

- Read percentages as a number out of 100 , e.g. ' 25% is 25 out of 100'.
- Emphasise the relationship between percentages, decimals and common fractions. Use hundred squares and place-value blocks to demonstrate this equivalence.
- Use numeral cards to label fractions, decimals and percentages in many different ways.

Activity

- Students could categorise examples of percentages collected from the environment, e.g. interest rates, discounts, nutrition information on food packaging etc.

Extension Work

- Have students take turns to roll two dice, multiply the numbers thrown and colour the appropriate percentage on a hundred square. The first player to completely colour the hundred square is the winner.

Language

fraction, decimal, percentage, hundredth, tenth, decimal point, per cent sign, whole, denominator, numerator, 50 out of 100, sixty-five per cent, eighty per cent etc.

Resources

- hundred squares
- place-value blocks
- numeral cards
- dice

Cross-reference

See also: pp. 5, 6
Year 5 p. 26

Evaluation

Is the student able to do the following?

- recognise percentages in everyday situations
- relate a common percentage to a fraction or decimal

1:05 Percentages

Content strand: Number and Algebra
Sub-strand: Fractions and decimals
Content description:

- Make connections between equivalent fractions, decimals and percentages.

Teaching Suggestions

- Read percentages as a number out of 100, e.g. '75\% is 75 out of 100'.
- Emphasise the relationship between percentages, decimals and common fractions.
- Use calculators to convert fractions to decimals, e.g. $\frac{9}{10}$ is 9 divided by 10 to give 0.9 .
- Use numeral cards to label fractions, decimals and percentages in many different ways.
- Reinforce the concept of significant and non-significant zeros.

Extension Work

- Have students work in groups with sets of cards representing hundredths, using different names, e.g. $\frac{25}{100}, 25$ out of $100,0.25$ and 25%. Have them use the cards to play familiar games such as Fish and Old Maid.

Language

whole, fraction, decimal, percentage, hundredth, ten decimal point, per cent sign, denominator, numerator 75 out of 100 , seventy-five per cent, sixty per cent etc.

1:06 Percentages

Content strand: Number and Algebra
Sub-strand: Fractions and decimals

Content description:

- Make connections between equivalent fractions, decimals and percentages.

Teaching Suggestions

- Answer Questions 9 to 23 on ID Card 1, p. 188.
- Revise the concept of the percentage (\%) as a fraction with a denominator of 100 .
- Use place-value blocks and hundred squares to demonstrate tenths and hundredths in decimals and corresponding percentages.
- Discuss the equivalence between decimal fractions and common percentages, e.g. $10 \%, 20 \%, 25 \%, 50 \%$, 75\%, 100\%.
- Use fraction labels (BLM 2, p. 196) to name fractions.
- Provide students with frequent opportunities to read and write percentages in everyday situations, e.g. '30\% of the land is irrigated'.

Extension Work

- Use BLW 20 Finding Percentage, p. 230, for further work.

Language

fraction, decimal, percentage, per cent (\%), tenths, hundredths, zero point four, zero point three five

Resources

- place-value blocks and hundred squares
- ID Card 1, p. 188
- fraction labels (BLM 2, p. 196)
- BLW 20 Finding Percentage, p. 230

Cross-reference

See also: pp. 4, 5
Year 5 p. 26

Evaluation

Is the student able to do the following?

- model, compare and epresent commonly used fractions, decimals and percentages

Ans
 (1) a

$0 \cdot 3=30 \%$

$0.95=95 \%$
g

$0.46=46 \%$

$0 \cdot 15=15 \%$

$0.5=50 \%$

$0 \cdot 7=70 \%$

d	60%	e 25%	
i	50%	j	10%
d	55%	e	95%
i	10%	j	5%
d	0.75	e	0.1
i	0.05	j	0.15

$0.6=60 \%$

$0.89=89 \%$

$0.82=82 \%$
j

$0.05=5 \%$

1:07) Powers of Ten

Content strand: Number and Algebra
Sub-strand: Number and place value
Content description:

- Recognise, represent and order numbers to at least tens of thousands. [Progression]

Teaching Suggestions

- Read 10^{2} as 'ten to the power of two', 10^{3} as 'ten to the power of three' and 10^{4} as 'ten to the power of four'.
- Demonstrate that the index number shows the number of times that ten is multiplied by itself, i.e. 10^{1} is 10 , 10^{2} is $10 \times 10,10^{3}$ is $10 \times 10 \times 10$, and 10^{4} is $10 \times 10 \times 10 \times 10$.
- Demonstrate that the index number also shows the number of zeros in the answer, i.e. 10^{1} is $10,10^{2}$ is 100 , 10^{3} is 1000 and 10^{4} is 10000 .
- Link powers of ten with previous work on powers such as 3^{2} is 3×3 (or 9) and 5^{2} is 5×5 (or 25).
- Relate powers of ten to previous work on place value and expanded notation.

Extension Work

- Some students may use the term 'index notation' (note 'indices' plural) to refer to the power to which a number is written e.g. 'the index number in 10^{2} is two'.

Answers

(1) a 37952
b 96831
c 62475
d 89354
(2) a $\left(6 \times 10^{3}\right)+\left(4 \times 10^{2}\right)+\left(9 \times 10^{1}\right)+1$
b $\left(2 \times 10^{4}\right)+\left(7 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(4 \times 10^{1}\right)+5$
c $\left(7 \times 10^{4}\right)+\left(8 \times 10^{3}\right)+\left(3 \times 10^{2}\right)+\left(1 \times 10^{1}\right)+9$
d $\left(4 \times 10^{4}\right)+\left(5 \times 10^{3}\right)+\left(6 \times 10^{2}\right)+\left(2 \times 10^{1}\right)+8$
(3)

	Ten thousands	Thousands	Hundreds	Tens	Ones
	a	7	9	2	3
b	4	6	7	9	3
c	3	5	6	8	6
d	8	3	5	6	2

(4) a 64958
b 96743
C 372598

1:08 Negative Numbers

Content strand: Number and Algebra
Sub-strand: Number and place value

Content description:

- Investigate everyday situations that use positive and negative whole numbers and zero. Locate and represent these numbers on a number line.

Teaching Suggestions

- Discuss the concept of a negative number, i.e. a number less than zero.
- Use a thermometer scale as a number line to order numbers including some negative numbers.
- Discuss the use of negative numbers in everyday contexts, e.g. bank balances, scientific experiments.
- Relate the use of negative numbers to the operation of subtraction.

ICT

- Ask students to use the internet to research the use of negative numbers in real-life situations.

Extension Work

- Have students roll two dice three times and record the totals.
- Repeat and record the totals as negative numbers.
- Order the six numbers along a number line drawn on 5 mm grid paper (BLM 13, p. 207).

Language

numeral, digits, zero, negative number, less than zero, positive number, more than zero

Resources

- internet access
- dice
- 5 mm grid paper (BLM 13, p. 207)

Cross-reference

See also: pp. 9, 12, 13, 14

Evaluation

Is the student able to do the following?

- read, write and order numbers using place value
- locate and represent negative numbers on a number

Answers

(1) a $-10^{\circ} \mathrm{C}$ b $0^{\circ} \mathrm{C} \quad$ c $-20^{\circ} \mathrm{C}$ d $-14^{\circ} \mathrm{C}$ e $-6^{\circ} \mathrm{C}$ f $-2^{\circ} \mathrm{C}$
(2) $\begin{array}{llllll}\mathbf{a} 2 & b-1 & c & -3 & d & -11\end{array}$
$\begin{array}{llll}\text { e }-7 & \mathbf{f} & -10 & \mathbf{g}\end{array} \mathbf{- 8} \quad \mathbf{h}-5$
(3) $\begin{array}{lllll}a & b & b & \text { c } 8 & \text { d } 3\end{array}$
$\begin{array}{llll}\text { e } 1 & f & -5 & g \\ 5 & h & 1\end{array}$
$\begin{array}{lllll}\mathbf{i} 7 & \text { j }-6 & k & -3 & \text { I } 0\end{array}$

ICT

Answers will vary.

1:09 Positive and Negative Numbers

Content strand: Number and Algebra
Sub-strand: Number and place value

Content description:

- Investigate everyday situations that use positive and negative whole numbers and zero. Locate and represent these numbers on a number line.

Teaching Suggestions

- Revise the definition of the term negative number, i.e. a number less than zero.
- Discuss the fact that whole numbers, fractions, decimals and percentages can be extended to include negative numbers.
- Ask students to look carefully at the number lines and compare the use of fractions, decimals and percentages.
- Relate the use of negative numbers to the operation of subtraction.
- Discuss rocket countdowns: 3, 2, 1, 0, 1 after lift-off, 2 after lift-off etc. Discuss the use of negative numbers to say this: $3,2,1,0,-1,-2$ etc.

Fun Spot

- Students can work in groups of two or more. Ensure they understand the rules of the game by demonstrating how it works. Choose one dice to represent the direction of movement and the other dice to represent the size of the move.

Answers

1
rs

Extension Work

- Ask students to use number lines (BLM 11, p. 205) to devise their own number patterns using fractions, decimals and percentages.

Language

numeral, digits, zero, negative and positive numbers, positive 2, negative 2, minus 2, whole numbers, fractions, decimals, percentages, number line

Resources

- dice
- number lines (BLM 11, p. 205)

Cross-reference

See also: pp. 8, 12, 13, 14

Evaluation

Is the student able to do the following?

- use a number tine to complete fraction, decimal and percentage patterns

2

(3)

C

1:10 Improper Fractions and Mixed Numbers

Content strand: Number and Algebra
Sub-strand: Fractions and decimals
Content description:
Count by quarters, halves and thirds, including with mixed numerals. Locate and represent these fractions on a number line. [Progression]
Sub-strand: Patterns and algebra

Content description:

- Continue and create sequences involving whole numbers, fractions and decimals. Describe the rule used to create the sequence.

Teaching Suggestions

- Answer Questions 9 to 24 on ID Card 1, p. 188.
- Revise these terms:
- mixed number - a whole number and a fraction part;
- improper fraction - the numerator is bigger than the denominator.
- Use concrete materials and number lines to demonstrate mixed numbers and improper fractions.
- Provide frequent opportunities for students to rename mixed numbers as improper fractions.
- Discuss the use of division to find the mixed number for an improper fraction.

Extension Work

- Complete BLW 8 Mixed Numbers, p. 218.
- On 5 mm grid paper (BLM 13, p. 207) draw a number line to show quarters from zero to four. Record the fractions as both mixed numbers and improper fractions.

Language

fraction, numerator, denominator, improper fraction, mixed number

Resources

- place-value blocks
- fraction charts
- ID Card 1, p. 188
- 5 mm grid paper (BLM 13, p. 207)
- BLW 8 Mixed Numbers, p. 218

Cross-reference

See also: pp.
Year 5 p. 18

Evaluation

Is the student able to do the following?

- model, compare and represent commonly used fractions
express a mixed number as an improper fraction and vice versa

Answers

(1) a $\frac{7}{4}, 1 \frac{3}{4}$ b $\frac{11}{6}, 1 \frac{5}{6}$ c $\frac{8}{5}, 1 \frac{3}{5}$
d $\frac{11}{8}, 1 \frac{3}{8}$ e $\frac{14}{5}, 2 \frac{4}{5}$ f $\frac{13}{6}, 2 \frac{1}{6}$
(2) a $1 \frac{1}{5}$
b $2 \frac{1}{5}$
c $1 \frac{4}{5}$
d $2 \frac{3}{5}$
e $3 \frac{1}{5}$
f $2 \frac{2}{5}$
g $3 \frac{2}{5}$
h $1 \frac{2}{5}$
i $1 \frac{4}{5}$
j $1 \frac{3}{5}$
(3)

| a $\frac{9}{5}$ | b $\frac{13}{5}$ | c $\frac{17}{5}$ | d $\frac{6}{5}$ | e $\frac{12}{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| f $\frac{16}{5}$ | g $\frac{7}{5}$ | h $\frac{11}{5}$ | i $\frac{19}{5}$ | j $\frac{8}{5}$ |

(4) a $1 \frac{1}{4}$
b $1 \frac{3}{10}$
c $1 \frac{1}{8}$
d $1 \frac{1}{6}$
e $2 \frac{1}{4} \quad f \quad 1 \frac{7}{10}$
g $1 \frac{3}{8} \quad$ h $1 \frac{1}{12}$ i $1 \frac{5}{8}$
j) $2 \frac{3}{4} \quad \mathrm{k} 2 \frac{5}{6} \quad 1 \quad 1 \frac{5}{12}$

5:15 Using Samples

Content strand: Statistics and Probability
Sub-strand: Data representation and interpretation

Content description:

- Interpret secondary data presented in digital media and elsewhere.
Sub-strand: Chance

Content description:

- Describe probabilities using fractions, decimals and percentages.

Teaching Suggestions

- Discuss the use of survey data to make predictions about bigger samples.
- Provide students with frequent opportunities to use survey data to make predictions about bigger samples.
- Survey students in one class to gather data and make predictions for 100 students. Survey 100 students and compare the results with those predicted. Discuss the results.

Activity

- Ask students to predict the outcome of this survey before they begin. Have them list the colours in expected order of choice and write the number out of 50 that might choose each colour. Have students write each estimate as a percentage.
- Results could be combined and then discussed. Dis whose estimate was closest.

Extension Work

- Have students design a spinner (BLM 10, p. 204) or dice so that a particular outcome is more likely to occur than another.

Language

survey, probability, likelihood, predict, outcome

Resources

- dice
- spinners (BLM 10, p. 204)

Cross-reference

See also: pp. 155, 158, 159
Year 5 p. 163

Evaluation

Is the student able to do the following?

- assign numerical values to the likelihood of simple events occurring
- order the likelihood of simple events on a number line from

Answers

(1) a 18
b 28
C 12
d 42
e 120
f 420
g 180
h 280
(2) a 20
b 20
C 10
d 50
e 10% f 50% g 20% h 20%
i 70% j 30% k 90%
I yes (Answers will vary.)
m Answers will vary. If the purpose was to sample the school, some from each year would be a better sample.

5:16 Collecting Information

Content strand: Statistics and Probability
Sub-strand: Data representation and interpretation
Content description:

- Interpret secondary data presented in digital media and elsewhere.

Teaching Suggestions

- Discuss the Concept box and explain the difference between the terms census (everybody in the chosen population is asked the question) and sample (only part of the chosen population is asked the question).
- Determine the goal of the survey in Question 1. Is it to find the fruit liked by one class or by the school? If it is for one class, choosing 10 people as a sample would be reasonable. If it is for the school, it would be hopelessly inadequate as the number would be too small and the choices from one class would not be a good indication of the preferences of the whole school. Ask if the order in which the fruits are listed might affect a person's choice. Ask how this might be overcome. (Many survey sheets could be used, each using a different order of the fruits. If this method is used, it would be explained in Question 4.)
- Revise changing the score out of 10 into a percentage, and quickly discuss the column graph that is to be drawn.
- Remind students that these graphs could be called either 'bar graphs' or 'column graphs'.

Answers

Answers will vary.

5:17 Repeating an Experiment

Content strand: Statistics and Probability
Sub-strand: Chance
Content description:

- Conduct chance experiments with both small and large numbers of trials using appropriate digital technologies.
- Describe probabilities using fractions, decimals and percentages.

Teaching Suggestions

- The purpose of this lesson is to demonstrate that when an experiment is repeated we are unlikely to gain identical results, but there should be some similarity. We also wish to demonstrate that the results are more reliable if the number of cases we use is large. By combining the results of the two trials we would obtain more reliable experimental probabilities.
- These experiments should be carried out in small groups. Discussion of the investigation as it occurs will increase understanding.

Investigation

- Discuss the possibility that the bottle top could land on its side. This is highly unlikely, but if it occurs during the experiment a third category would have to be added, 'On its side'.
- Discuss the tables on the page and how they should be used. Review the method of changing a fraction out of 50 into a fraction out of 100 and so into a percentage
- Have students discuss the results of their experiment and have each group read this aloud to the class.
Compare the results.

Extension Work

- Ask students to carry out the experiment a third time using two bottle tops and the categories, ' 2 open ends up', '1 open end up' and 'No open end up'.
- Remind students that it may be necessary to include a fourth category, 'On its side'.
- Have students provide tables similar to those on the Student Book page and write a report on their experiment.

Language

experiment, more likely, open end up, open end down, fraction, percentage, hundredths, numerator, denominator, tally, trial, data, results, probability
Resources

- bottle tops

Cross-reference
See also pp. 150, 154, 155, 159
Year 5 p. 163

Evaluation

the student able to do the following?
conduct chance experiments involving a large number of trials

Answers

(1) Answers will vary.
(2) Trial 1 plus Trial 2. The more times it is trialled, the greater is the likelihood that the answer will reflect the real probability.

5:18 Chance: Expected Results

Content strand: Statistics and Probability
Sub-strand: Chance
Content description:

- Compare observed frequencies across experiments with expected frequencies.

Teaching Suggestions

- Discuss the term random. One definition is 'to choose without looking'. Ask: 'Will the result be random if I tossed a coin? Do I need to be blindfolded? Why or why not?' This is a random action because we cannot affect the result of tossing a coin. Ask: 'How would we randomly select a counter from the container in Question 1?'
- Ask: 'If I tossed a coin 1000 times, how many tails would you expect to be tossed? What percentage is this?' Most people would say 500, as heads and tails have the same chance of occurring and so should occur the same number of times. In practice, this rarely works out exactly, but we use the term expected result to describe the result that is most likely to happen.
Ask: 'If I roll a dice 600 times, how many sixes would you expect me to roll?'
- Ask: 'If I choose a counter from the container in Experiment 1, replacing the counter after each choice how many red counters would you expect me to choose in 400 choices? What percentage would this be?'
- Ask: 'Could I toss 100 heads in a row?' Even though this is possible, the chance of it occurring is extremely small, and if it happened, you would doubt that the coin is a fair coin.

Extension Work

- Have students collect information from other groups and combine them with their own to see if a large number of cases will give you a result that is closer to the expected result, when expressed as a percentage.

Language

chance, expected (calculated) result, experimental result, random, tally, probability

Resources

- 3 red counters, 1 blue counter
- container
- coins

Cross-reference
See alsontpp.150,154, 155, 158
Year 5

Evaluation

Is the student able to do the following?
prédict expected results in chance experiments

[^0]: pubbe and does atie

