

Australian Signpost Maths Year 5 (AC V9.0) Curriculum Map

Strand	Code	Descriptor	Australian Signpost Maths 5 Lessons
Number	AC9M5N01	interpret, compare and order numbers with more than 2 decimal places, including numbers greater than one, using place value understanding; represent these on a number line	1:01 Numbers using millions 1:02 Large numbers 1:03 Using large numbers 1:07 Tenths and hundredths 1:14 Place value to thousandths 1:15 Place value and decimals 1:20-21 Comparing decimals 1:25 Using decimals
Number	AC9M5N02	express natural numbers as products of their factors, recognise multiples and determine if one number is divisible by another	2:01 Number facts, x 6, x 7, x $8, x 9$ 2:02 Learning your multiplication tables 2:11 Multiples 2:12 Factors 2:13 Factors and multiples 2:35 Divisibility 2:36 Factors and multiples 2:37 Using factors in multiplication 2:53 Using operations to solve problems
Number	AC9M5N03	compare and order fractions with the same and related denominators including mixed numerals, applying knowledge of factors and multiples; represent these fractions on a number line	1:05: The order of unit fractions 1:06 Mixed numbers 1:07 Tenths and hundredths 1:10 Fractions 1:11 mproper fractions, mixed numbers 1:17-19 Equivalent fractions
Number	AC9M5N04	recognise that 100% represents the complete whole and use percentages to describe, represent and compare relative size; connect familiar percentages to their decimal and fraction equivalents	1:08 Percentages 1:09 Using percentages
Number	AC9M5NO5	solve problems involving addition and subtraction of fractions with the same or related denominators, using different strategies	1:04 Fractions 1:12 Addition of fractions 1:13 Subtraction of fractions 1:16 Addition and subtraction of fractions 1:22 Subtraction from whole numbers 1:23 Using fractions 1:24 Solving problems with fractions
	AC9M5N06	solve problems involving multiplication of larger numbers by one- or two-digit numbers, choosing efficient calculation strategies and using digital tools where appropriate; check the reasonableness of answers	2:31 Multiplying tens 2:32 Multiplying tens or hundreds 2:39 Mental strategies for multiplication 2:43 Multiplying 2-digit numbers 2:44-45 The extended form of multiplication 2:46-47 The contracted form of multiplication 2:54 Estimating products 2:55 Strategies for multiplication
Number	AC9M5N07	solve problems involving division, choosing efficient strategies and using digital tools where appropriate; interpret any remainder according to the context and express results as a whole number, decimal or fraction	2:17 Division with remainders 2:18 Division of 2-digit numbers 2:19 Using division facts 2:27-29 Dividing 2-digit numbers 2:30 Dividing 3-digit numbers 2:33 Dividing 3-digit numbers by 10 2:34 Dividing with zero in the answer 2:38 Averages 2:53 Using operations to solve problems

Australian Signpost Maths Year 5 (AC V9.0) Curriculum Map

Number	AC9M5N08	check and explain the reasonableness of solutions to problems including financial contexts using estimation strategies appropriate to the context	2:06-7 Addition to 999 2:08 Using the addition algorithm 2:09 Subtraction with trading 2:23 Addition to 9999 2:25 Subtraction from 1000s 2:49-50 Estimating by rounding 2:54 Estimating products
Number	AC9M5N09	use mathematical modelling to solve practical problems involving additive and multiplicative situations including financial contexts; formulate the problems, choosing operations and efficient calculation strategies, using digital tools where appropriate; interpret and communicate solutions in terms of the situation	2:04 Rounding 2:05 Strategies, + and - 2:06-7 Addition to 999 2:08 Using the addition algorithm 2:09 Subtraction with trading 2:10 Subtraction to 999 2:14 Addition of money 2:15 Subtraction of money 2:16 Shopping 2:20 Subtraction to 999 2:21 Subtraction from hundreds 2:22-23 Additionto 9999 2:24 Subtraction to 9999 2:25 Subtraction from 1000s 2:26 Subtraction from 1000s strategy 2:38 Ayerages 2:48 Problems involving change of units 2:51 Using your income 2:52 Making a budget 2:53 Using operations to solve problems 2:56-59 Multiplication by 2-digit numbers
Number	AC9M5N10	create and use algorithms involving a sequence of steps and decisions and digital tools to experiment with factors, multiples and divisibility; identify, interpret and describe emerging patterns	1:26 Patterns and percentages 2:08 Using the addition algorithm 2:40-42 Algebraic thinking
Algebra	C9M5A01	recognise and explain the connection between multiplication and division as inverse operations and use this to develop families of number facts	2:01 Number facts, x 6, x 7, x 8, x 9 2:03 Division facts 2:18 Division of 2-digit numbers 2:19 Using division facts
Algebra	AC9M5A02	find unknown values in numerical equations involving multiplication and division using the properties of numbers and operations	2:40-42 Algebraic thinking 2:60 Finding missing numbers
Measurement	AC9M5M01	choose appropriate metric units when measuring the length, mass and capacity of objects; use smaller units or a combination of units to obtain a more accurate measure	3:01 Kilometres 3:02 Kilometres and metres 3:13 Using measurement scales 3:14 Millimetres 3:15 Converting length measurements 3:18 Grams and kilograms 3:19 Measuring mass 3:22 Measuring volume in mL 3:23 Capacity and volume 3:24 Measuring capacity

Australian Signpost Maths Year 5 (AC V9.0) Curriculum Map

Measurement	AC9M5M02	solve practical problems involving the perimeter and area of regular and irregular shapes using appropriate metric units	3:03-4 Perimeter 3:05 Calculating area 3:06 Square metres 3:07 Area 3:08 Problem solving 3:14 Millimetres 3:20 Perimeter 3:21 Exploring perimeter and area 3:25 Hectares 3:26 Square kilometres
Measurement	AC9M5M03	compare 12- and 24-hour time systems and solve practical problems involving the conversion between them	3:08 Problem solving 3:09 Time units 3:10 24-hour time 3:11 Using 12- and 24 -hour time 3:12 24-hour time problems 3:16 24-hour time 3:17 Problems involving time
Measurement	AC9M5M04	estimate, construct and measure angles in degrees, using appropriate tools including a protractor, and relate these measures to angle names	4:07 Using a protractor 4:08 Angle types in degrees 4:09 Using a protractor 4:10 Classifying angles 4:14 Measuring angles of rotation 4:19 Drawing angles 4:20 Angles greater than 180° 4:23 Using angles
Space	AC9M5SP01	connect objects to their nets and build objects from their nets using spatial and geometric reasoning	4:01 3D space 4:02 Prisms and pyramids 4:05 Nets 4:16 Views and nets of 3D objects
Space	AC9M5SP02	construct a grid coordinate system that uses coordinates to locate positions within a space; use coordinates and directional language to describe position and movement	4:06 Describing position 4:11 Compass directions 4:12 Reading a map 4:17 Coordinates on the number plane 4:18 Using coordinates 4:21 Mapping Australia
Space	AC9M5SP03	describe and perform translations, reflections and rotations of shapes, using dynamic geometric software where appropriate; recognise what changes and what remains the same, and identify any symmetries	4:03 Reflection, translation, rotation 4:04 Flip, slide, turn 4:13 Rotational symmetry 4:14 Measuring angles of rotation 4:15 Rotational symmetry 4:22 Using transformations
Statistics	AC9M5ST01	acquire, validate and represent data for nominal and ordinal categorical and discrete numerical variables, to address a question of interest or purpose using software including spreadsheets; discuss and report on data distributions in terms of highest frequency (mode) and shape, in the context of the data	5:01 Reading graphs 5:02 Drawing graphs 5:03 Drawing picture graphs 5:08 Dot plots 5:16 Collecting data 5:17 Data collected over time 5:20 Bar and sector graphs 5:21 Reasoning with graphs

Australian Signpost Maths Year 5 (AC V9.0) Curriculum Map

Statistics	AC9M5ST02	interpret line graphs representing change over time; discuss the relationships that are represented and conclusions that can be made	5:09 More line graphs 5:10 Reading line graphs 5:11 Drawing line graphs 5:12 Matching graphs with stories 5:16 Collecting data 5:17 Data collected over time
Statistics	AC9M5ST03	plan and conduct statistical investigations by posing questions or identifying a problem and collecting relevant data; choose appropriate displays and interpret the data; communicate findings within the context of the investigation	5:04 Surveys 5:18 Data investigation 5:19 Using spreadsheets 5:22 Selecting a graph to use 5:23 Comparing types of graphs
Probability	AC9M5P01	list the possible outcomes of chance experiments involving equally likely outcomes and compare to those which are not equally likely	5:05 Choosing at random 5:06 Fair or unfair? 5:07 Comparing chances 5:13 Chance, as a fraction 5:14 Chance 5:15 Collecting chance data
Probability	AC9M5P02	conduct repeated chance experiments including those with and without equally likely outcomes, observe and record the results; use frequency compare outcomes and estimate their likelihoods	5:15 Collecting chance data

Australian Signpost Maths 5 (AC V9.0) Suggested Program

Term 1

Week Program	Page	Unit	Title	Strand	Curriculum Code/s	Curriculum subelements
Week 1	Revision and testing (Mentals unit 1)					
Week 2	Revision and testing (Mentals unit 2)					
Week 3	1	1:01	Numbers using millions	Number and algebra	AC9M5N01	Number and place value
	2	1:02	Large numbers	Number and algebra	AC9M5N01	Number and place value, Counting processes
	3	1:03	Using large numbers	Number and algebra	AC9M5N01	Number and place value, Counting processes
	27	2:01	$\begin{aligned} & \text { Number facts, } \times 6, \times 7, \times 8 \text {, } \\ & \times 9 \end{aligned}$	Operations and algebra	AC9M5A01 AC9M5N02	Multiplicative strategies. Algebraic thinking
	28	2:02	Learning your multiplication tables	Operations and algebra	AC9M5	Multiplicative strategies
Week 4	4	1:04	Fractions	Number and algebra		Interpreting fractions
	5	1:05	The order of unit fractions	Number and algebra	C9M5NO	Interpreting fractions
	6	1:06	Mixed numbers	Number and algebra	AC9M5N03	Interpreting fractions
	6	2:03	Division facts	Operations and algebra	AC9M5A01	Algebraic thinking
Week 5	7	1:07	Tenths and hundredths	Number and algebra	AC9M5N01 AC9M5N03	Interpreting fractions, Number and algebra
	8	1:08	Percentage	Number and algebra	AC9M5N04	Proportional thinking
	9	1:09	ng percentag	Number and algebra	AC9M5N04	Proportional thinking
	87	3:01	ometr	Measurement	AC9M5M01	Understanding units of measurement (Length)
	88	3:02	Kilometres and metres	Measurement	AC9M5M01	Understanding units of measurement (Length)
Week 6		$1: 10$	Fractions	Number and algebra	AC9M5N03	Interpreting fractions
	11	1:11	Improper fractions, mixed numbers	Number and algebra	AC9M5N03	Interpreting fractions
	89	3:03	Perimeter	Measurement	AC9M5M02	Understanding units of measurement (Perimeter)
	90	3:04	Perimeter	Measurement	AC9M5M02	Understanding units of measurement (Perimeter)

Australian Signpost Maths 5 (AC V9.0) Suggested Program

Term 1 cont.

Week 7	12	1:12	Addition of fractions	Number and algebra	AC9M5N05	Interpreting fractions, Additive strategies
	13	1:13	Subtraction of fractions	Number and algebra	AC9M5N05	Interpreting fractions, Additive strategies
	91	3:05	Calculating area	Measurement	AC9M5M02	Understanding units of measurement (Area)
	92	3:06	Square metres	Measurement	AC9M5M02	Understanding units of measurement (Area)
	136	5:01	Reading graphs	Statistics	AC9M5ST01	Interpreting and representing data
Week 8	14	1:14	Place value to thousandths	Number and algebra	AC9M5N01	Number and place value
	15	1:15	Place value and decimals	Number and algebra	AC9M5N01	Number and place value
	93	3:07	Area	Measurement	AC9M5M0	Understanding units of measurement (Area)
	94	3:08	Problem solving	Measurement	C9M5M03	Understanding units of measurement, Measuring time
	137	5:02	Drawing graphs	Statistics	AC9M5ST01	Interpreting and representing data
Week 9	31	2:04	Rounding	Operations and algebra	AC9M5N09	Number and place value
	32	2:05	Strategies, + and -	Operations and algebra	AC9M5N09	Number and place value
	95	3:09	Time units	Measurement	AC9M5M03	Measuring time
	96	3:10	24	Measurement	AC9M5M03	Measuring time
	138	5:03	Drawing picture graphs	Statistics	AC9M5ST01	Interpreting and representing data
Week 10	32	2:06	Addition to	Operations and algebra	AC9M5N08 AC9M5N09	Additive strategies
		2:0	Addition to 999	Operations and algebra	AC9M5N08 AC9M5N09	Additive strategies
		08	Using the addition algorithm	Operations and algebra	AC9M5N08 AC9M5N09 AC9M5N10	Additive strategies

Australian Signpost Maths 5 (AC V9.0) Suggested Program

Term 2

Week Program	Page	Unit	Title	Strand	Curriculum Code/s	Curriculum subelements
Week 11	35	2:09	Subtraction with trading	Operations and algebra	AC9M5N08 AC9M5N09	Additive strategies
	36	2:10	Subtraction to 999	Operations and algebra	AC9M5N09	Additive strategies
	97	3:11	Using 12- and 24-hour time	Measurement	AC9M5M03	Measuring time
	98	3:12	24-hour time problems	Measurement	AC9M5M03	Measuring time
Week 12	37	2:11	Multiples	Operations and algebra	AC9M5N02	Multiplicative strategies
	38	2:12	Factors	Operations and algebra	AC9M5N02	Multiplicative strategies
	39	2:13	Factors and multiples	Operations and algebra	$9 \mathrm{M} 5 \mathrm{NO}$	Multiplicative strategies
	113	4:01	3D space	Space	AC9M5SP01	Understanding geometric properties (3D space)
	114	4:02	Prisms and pyramids	Space	AC9M5SP01	Understanding geometric properties (3D space)
Week 13	40	2:14	Addition of money	Operations and algebra	AC9M5N09	Additive strategies, Understanding money
	41	2:15	Subtraction of money	Operations and algebra	AC9M5N09	Additive strategies, Understanding money
	42	2:16	Shopping	Operations and algebra	AC9M5N09	Additive strategies, Understanding money
	115	4:03	Reflection, translat rotation		AC9M5SP03	Understanding geometric properties (2D space)
	116	4:04	, slide, turn	Space	AC9M5SP03	Understanding geometric properties (2D space)
Week 14	43	17	vision with remainders	Operations and algebra	AC9M5N07	Multiplicative strategies
		:18	Division of 2-digit numbers	Operations and algebra	AC9M5N07 AC9M5A01	Multiplicative strategies. Algebraic thinking
		19	Using division facts	Operations and algebra	AC9M5N07 AC9M5A01	Multiplicative strategies. Algebraic thinking
	117	4:05	Nets	Space	AC9M5SP01	Understanding geometric properties (3D space)
	118	4:06	Describing position	Space	AC9M5SP02	Positioning and locating
Week 15	46	2:20	Subtraction to 999	Operations and algebra	AC9M5N09	Additive strategies
	47	2:21	Subtraction from hundreds	Operations and algebra	AC9M5N09	Additive strategies
	119	4:07	Using a protractor	Space	AC9M5M04	Understanding geometric properties (Angles)
	120	4:08	Angle types in degrees	Space	AC9M5M04	Understanding geometric properties (Angles)

Australian Signpost Maths 5 (AC V9.0) Suggested Program
Term 2 cont.

Week 16	48	2:22	Addition to 9999	Operations and algebra	AC9M5N09	Additive strategies
	49	2:23	Addition to 9999	Operations and algebra	AC9M5N08 AC9M5N09	Additive strategies
	121	4:09	Using a protractor	Space	AC9M5M04	Understanding geometric properties (Angles)
	122	4:10	Classifying angles	Space	AC9M5M04	Understanding geometric properties (Angles)
	139	5:04	Surveys	Statistics	AC9M5ST03	Interpreting and representing data
Week 17	50	2:24	Subtraction to 9999	Operations and algebra	AC9M5N09	ditive strategi
	51	2:25	Subtraction from 1000s	Operations and algebra	AC9M5N08 AC9M5N09	ditive strategi
	52	2:26	Subtraction from 1000s strategy	Operations and algebra		Additive strategies
	123	4:11	Compass directions	Space	5SP0	Positioning and locating
	124	4:12	Reading a map	Space	9M5SP02	Positioning and locating
Week 18	53	2:27	Dividing 2-digit numbers	Operations an algebra	AC9M5N07	Multiplicative strategies
	54	2:28	Dividing 2-digit numbers	Operations and algebra	AC9M5N07	Multiplicative strategies
	125	4:13	Rotational symmetry	Space	AC9M5SP03	Understanding geometric properties (2D space)
	126	4:14	Measuring angles o rotation		AC9M5SP03 AC9M5M04	Understanding geometric properties (2D space, Angles)
	127	4:15	tional symm	Space	AC9M5SP03	Understanding geometric properties (2D space)
Week 19	55	$2: 29$	Dividing 2-digit numbers	Operations and algebra	AC9M5N07	Multiplicative strategies
		$2: 30$	Dividíng 3-digit numbers	Operations and algebra	AC9M5N07	Multiplicative strategies
			Choosing at random	Probability	AC9M5P01	Understanding chance
	141	5:06	Fair or unfair?	Probability	AC9M5P01	Understanding chance
	142	5:07	Comparing chances	Probability	AC9M5P01	Understanding chance
Week 20	57	2:31	Multiplying tens	Operations and algebra	AC9M5N06	Multiplicative strategies
	58	2:32	Multiplying tens or hundreds	Operations and algebra	AC9M5N06	Multiplicative strategies

Australian Signpost Maths 5 (AC V9.0) Suggested Program

Term 3

Week Program	Page	Unit	Title	Strand	Curriculum Code/s	Curriculum subelements
Week 21	16	1:16	Addition and subtraction of fractions	Number and algebra	AC9M5N05	Interpreting fractions, Additive strategies
	17	1:17	Equivalent fractions	Number and algebra	AC9M5N03	Interpreting fractions
	128	4:16	Views and nets of 3D objects	Space	AC9M5SP01	Understanding geometric properties (3D space)
	129	4:17	Coordinates on the number plane	Space	AC9M5SP02	Positioning and locating
	130	4:18	Using coordinates	Space	AC9M5SP02	sitioning and locating
Week 22	18	1:18	Equivalent fractions	Number and algebra	AC9M5N03	interpreting fractions
	19	1:19	Equivalent fractions	Number and algebra	AC9M5N03	Interpreting fractions
	99	3:13	Using measurement scales	Measurement	AC9M5M	Understanding units of measurement
	100	3:14	Millimetres	Measuremen	AC9M5M01 AC9M5M02	Understanding units of measurement (Length)
	101	3:15	Converting length measurements	Meâsurement	AC9M5M01	Understanding units of measurement
Week 23	20	1:20	Comparing decimals	Number and algebra	AC9M5N01	Number and place value
	21	1:21	Comparing decima	Number and algebra	AC9M5N01	Number and place value
	102	3:16	24-hour time	Measurement	AC9M5M03	Measuring time
	103	3:17	Problems involving time	Measurement	AC9M5M03	Measuring time
	143	5:08	tplo	Statistics	AC9M5ST01	Interpreting and representing data
Week 24	59	:33	Dividing 3-digit numbers by 10	Operations and algebra	AC9M5N07	Multiplicative strategies
	60	2:34	Dividing with zero in the answer	Operations and algebra	AC9M5N07	Multiplicative strategies
	61	$2: 35$	Divisibility	Operations and algebra	AC9M5N02	Multiplicative strategies
	104	3:18	Grams and kilograms	Measurement	AC9M5M01	Understanding units of measurement (Mass)
	105	3:19	Measuring mass	Measurement	AC9M5M01	Understanding units of measurement (Mass)
Week 25	62	2:36	Factors and multiples	Operations and algebra	AC9M5N02	Multiplicative strategies
	63	2:37	Using factors in multiplication	Operations and algebra	AC9M5N02	Multiplicative strategies
	64	2:38	Averages	Operations and algebra	AC9M5N07 AC9M5N09	Additive strategies, Multiplicative strategies

Australian Signpost Maths 5 (AC V9.0) Suggested Program
Term 3 cont.

Week 25 cont.	106	3:20	Perimeter	Measurement	AC9M5M02	Understanding units of measurement (Perimeter)
	107	3:21	Exploring perimeter and area	Measurement	AC9M5M02	Understanding units of measurement (Perimeter and Area)
Week 26	65	2:39	Mental strategies for multiplication	Operations and algebra	AC9M5N06	Multiplicative strategies
	66	2:40	Algebraic thinking	Operations and algebra	AC9M5N10 AC9M5A02	Number patterns and algebraic thinking
	67	2:41	Algebraic thinking	Operations and algebra	AC9M5N10 AC9M5A02	Number patterns and algebraic thinking
	144	5:09	More line graphs	Statistics	AC9M5ST02	Interpreting and representing data
	145	5:10	Reading line graphs	Statistics		Interpreting and representing data
Week 27	68	2:42	Algebraic thinking	Operations and algebra	AC9M5N10 AC9M5A02	Number patterns and algebraic thinking
	69	2:43	Multiplying 2-digit numbers	Operations and algebra	M5	Multiplicative strategies
	70	2:44	The extended form of multiplication	Operations and algebra	AC9M5N06	Multiplicative strategies
	71	2:45	The extended form of multiplication	Operations and algebra	AC9M5N06	Multiplicative strategies
	146	5:11	Drawing line graph	Statistic	AC9M5ST02	Interpreting and representing data
Week 28	72	2:46	The contracted form multiplication	Operations and algebra	AC9M5N06	Multiplicative strategies
	73	2:47	The contracted form of multiplication	Operations and algebra	AC9M5N06	Multiplicative strategies
	74	2:4	roblems involving chang f units	Operations and algebra	AC9M5N09	Additive strategies, Multiplicative strategies
	147	$5: 1$	Matching graphs with stories	Statistics	AC9M5ST02	Interpreting and representing data
Week 29		$2: 49$	Estimating by rounding	Operations and algebra	AC9M5N08	Additive strategies, Number and place value
		50:	Estimating by rounding	Operations and algebra	AC9M5N08	Additive strategies, Number and place value
	148	5:13	Chance, as a fraction	Probability	AC9M5P01	Understanding chance
	149	5:14	Chance	Probability	AC9M5P01	Understanding chance
Week 30	150	5:15	Collecting chance data	Statistics	AC9M5P01 AC9M5P02	Understanding chance
	151	5:16	Collecting data	Statistics	AC9M5ST01 AC9M5ST02	Interpreting and representing data

Australian Signpost Maths 5 (AC V9.0) Suggested Program

Term 4

Week - Program	Page	Unit	Title	Strand	Curriculum Code/s	Curriculum subelements
Week 31	22	1:22	Subtraction from whole numbers	Number and algebra	AC9M5N05	Interpreting fractions
	23	1:23	Using fractions	Number and algebra	AC9M5N05	Interpreting fractions
	108	3:22	Measuring volume in mL	Measurement	AC9M5M01	Understanding units of measurement (Volume)
	109	3:23	Capacity and volume	Measurement	AC9M5M01	Understanding units of measurement (Capacity and Volume)
	110	3:24	Measuring capacity	Measurement	AC9M5M01	Understanding units of measurement (Capacity)
Week 32	24	1:24	Solving problems with fractions	Number and algebra	AC9M5N05	Interpreting fractions
	25	1:25	Using decimals	Number and algebra	AC9M5NO	Number and place value
	77	2:51	Using your income	Operations an algebra	AC9M5N09	Additive strategies, Understanding money
	78	2:52	Making a budget	Operations and algebra	AC9M5N09	Additive strategies, Understanding money
	79	2:53	Using operations to solve problems	Operations and algebra	AC9M5N02 AC9M5N07 AC9M5N09	Additive strategies, Multiplicative strategies
Week 33	26	1:26	Patterns and percentag	Number and algebra	AC9M5N10	Interpreting fractions, Proportional thinking, Number patterns and algebraic thinking
	80	2:54	Estimating products	Operations and algebra	AC9M5N06 AC9M5N08	Multiplicative strategies
	81	2:55	Strategies for multiplication	Operations and algebra	AC9M5N06	Multiplicative strategies
	111	$3: 25$	Hectares	Measurement	AC9M5M02	Understanding units of measurement (Area)
	112	$3: 26$	Square kilometres	Measurement	AC9M5M02	Understanding units of measurement (Area)
Week 34	82	2:56	Multiplication by 2-digit numbers	Operations and algebra	AC9M5N09	Multiplicative strategies
	83	2:57	Multiplication by 2-digit numbers	Operations and algebra	AC9M5N09	Multiplicative strategies
	152	5:17	Data collected over time	Statistics	AC9M5ST01 AC9M5ST02	Interpreting and representing data
	153	5:18	Data investigation	Statistics	AC9M5ST03	Interpreting and representing data
	154	5:19	Using spreadsheets	Statistics	AC9M5ST03	Interpreting and representing data

Australian Signpost Maths 5 (AC V9.0) Suggested Program

Term 4 cont.

Week 35	84	2:58	Multiplication by 2-digit numbers	Operations and algebra	AC9M5N09	Multiplicative strategies
	85	2:59	Multiplication by 2-digit numbers	Operations and algebra	AC9M5N09	Multiplicative strategies
	131	4:19	Drawing angles	Space	AC9M5M04	Understanding geometric properties (Angles)
	132	4:20	Angles greater than 180°	Space	AC9M5M04	Understanding geometric properties (Angles)
Week 36	133	4:21	Mapping Australia	Space	AC9M5SP02	Positioning and locating
	134	4:22	Using transformations	Space	AC9M5SP03	Understanding geometric properties (2D space)
	135	4:23	Using angles	Space	AC9M5M04	Understanding geometric properties (Angles)
	155	5:20	Bar and sector graphs	Statistics	AC9M5ST01	Interpreting and representing data
	156	5:21	Reasoning with graphs	Statistics	C9M5ST0	Interpreting and representing data
Week 37	86	2:60	Finding missing numbers	Operations a algebra	AC9M5A02	Number patterns and algebraic thinking, Multiplicative strategies
Week 36	157	5:22	Selecting a graph to use	Statistics	AC9M5ST03	Interpreting and representing data
Week 36	158	5:23	Comparing types of graphs	,	AC9M5ST03	Interpreting and representing data

What is Australian Signpost Maths?

Australian Signpost Maths is a mathematics program providing direction and support for teaching and learning. The series covers the content and skills presented in the Australian Curriculum (v9) Mathematics F-10.

A Student Book and an online Teacher Resource are provided for Foundation.

For Years 1 to 6, a Student Book, an online Teacher Resource and a Mentals Book are provided for each year level. The online Teacher Resources provide a wealth of support for teachers.

The content has been carefully sequenced within each year level and across the $\mathrm{F}-6$ series to take into account students' expected mathematical development. However, from the rich and varied material provided, teachers can develop individual learning programs to meet the needs of each student.

The Student Books are designed to support explicit teaching methods. Many group activities are provided in Activity, Investigation and Fun spots within the Student Books and the online Teacher Resource.

To maximise the benefits of the program, the Student Book, the online Teacher Resource and the Mentals Book should be used together.

Student Books

Structure of Australion Signpost Maths

In the Year 3 to 6 books, the worksheet pages cover all three elements: Number sense and algebra, Measurement and geometry, and Statistics and probability. These are presented in five chapters

- Number andalgebra
- Operations and algebra
- Measurement
- Space
- Statistics and probability.

This gives teachers flexibility in programming.
The contents cross-reference allows teachers to quickly find the pages where each concept has been covered.

Within the program, explicit teaching, critical and creative thinking, language development and identification and treatment of weaknesses are given high priority.

Identification and addressing areas of need

Five progress tests are designed to identify each student's areas of need, and the follow-up program after each of the tests is designed to address these needs. A reference
to the relevant worksheet page is given for each test question. A remediation record page is used to track the student's progress.

These testing resources can be found in the online Teacher Resource.

Parallel progress retests are provided for further testing after remediation has taken place.

Special features of Australian Signpost Maths

- The traffic light icons

These are found on the top right of each worksheet page in the Student Books. They allow students to assess their own progress and give feedback to the teacher.Green: I found this work easy. Orange: I found some work on the page difficult.
Red: I don't understand the work on this page.

- Dictionary

Terms used in the Student Book and terms that should be understood at this level are recorded here to provide a reference for students and teachers. This is found on pages xiv-xxv of this book.

- ID cards (Years 1 to 6)

These cards review the language of Mathematics by asking students to identify common terms, shapes and symbols. They are designed to be reused and are found in the online Teacher Resource and in the front of the Mentals Books.

- Progress tests

These allow the teacher to identify each student's strengths and needs. Cross references for each question direct teachers and students to the pages where that work is introduced. Tables are provided to record the follow-up that takes place and parallel tests are provided for retesting. These tests can be found in the online Teacher Resource.

- Year 5 Consolidation booklet

This 32 page booklet is found in the online Teacher Resource. It is designed to reinforce work completed in class and provides practice of important skills and addition and subtraction facts. The booklet can be used when there is limited supervision or when a student finishes classwork early.

- Answers

These are supplied in the Student Book and the online Teacher Resource.

- Blackline masters (BLM)

References are made to the blackline masters in the Teacher Resource suggestions provided for each studentwork page.

- Differentiation

Each student work page has a Teacher Resource page to support it. Crossreferences direct the teacher to pages where the concept is introduced and developed. These references may be from the Student Book for the previous year, the current year or the next year.

The Teacher Resource support pages provide additional learning activities for students who need remediation or extension activities. The Blackline Masters provide activities to support students of various learning abilities.

- Cartoons

Cartoons are used to motivate and instruct.

- Extra support pages

Decimals, multiplication tables, factors and multiples, extended multiplication, estimation, patterns and problem solving are supported in the Extra support pages.

Australian Signpost Maths icons

Signpost icons are used throughout the book as cues to the essential nature of exercises and activities, and as a guide to ways of engaging with them. These icons often indicate alternative or more concrete approaches to dealing with concepts.

This icon highlights important rules and concepts occurring throughout the book. It often appears with worked examples.

Activities provide applications and enrichment. These activities usually involve the use of concrete materials and partner or group work.

These enjoyable activities are used to motivate and involve students in mathematical pursuits. They usually involve games and puzzles.

Structure of the Australian Curriculum, F-6 (v9)

 interrelated strands: Number, Algebra, Measurement, Space, Statistics

Sub-elements for Number sense and algebra

Counting processes
Additive strategies
Interpreting fractions

Number patterns and algebraic thinking

\square
Understanding money

Sub-elements for Measurement and geometry

Sub-elements for Statistics and probability
Understanding chance
Interpreting and representing data and Probability.
The Curriculum strives to develop in students proficiency in Mathematics, highlighting Understanding, Fluency, Reasoning and Problem solving.

Mathematics content of the Australian Curriculum

- It is important that you download the GENERAL CAPABILITIES document from 'Downloads' in the top navigation bar of the website homepage. It contains the tables that list the progression level expectations for each Year, F to 10 . It also provides the content of all progression levels.
- The LEARNING AREAS download gives a summary of Content descriptions and Elaborations. CROSS-CURRICULUM PRIORITIES can also be found there.

5

Content cross-reference xii
Dictionary xiv
Chapter 1 Number and algebra 1
Chapter 2 Operations and algebra 27
Chapter 3 Measurement 87
Chapter 4 Space 113
Chapter 5 Statistics and probability 136
Extra support 159
Answers 174
Number and algebra

Page	Unit	Title
1	$1: 01$	Numbers using millions
2	$1: 02$	Large numbers
3	$1: 03$	Using large numbers
4	$1: 04$	Fractions
5	$1: 05$	The order of unit fractions
6	$1: 06$	Mixed Numbers
7	$1: 07$	Tenths and hundredths
8	$1: 08$	Percentages
9	$1: 09$	Using percentags
10	$1: 10$	Fractions
11	$1: 11$	Improper fractions, mixed numbers
12	$1: 12$	Addition of fractions
13	$1: 13$	Subtraction of fractions
14	$1: 14$	Place value to thousandths
15	$1: 15$	Place value and decimals
16	$1: 16$	Addition and subtraction of fractions
17	$1: 17$	Equivalent fractions
18	$1: 18$	Equivalent fractions
19	$1: 19$	Equivalent fractions
20	$1: 20$	Comparing decimals
21	$1: 21$	Comparing decimals
22	$1: 22$	Subtraction from whole numbers
23	$1: 23$	Using fractions
24	$1: 24$	Solving problems with fractions
25	$1: 25$	Using decimals
26	$1: 26$	Patterns and percentages

- The teacher will decide when testing occurs. The Progress Tests and Re-tests are found in the online Teacher Resource.
- Suggested program: The first two units of the Mentals Book review the previous year and could be completed in Weeks 1 and 2.

- The teacher will decide when testing occurs. The Progress Tests and Re-tests are found in the online Teacher Resource.

- The teacher will decide when testing occurs. The Progress Tests and Re-tests are found in the online Teacher Resource.

- The teacher will decide when testing occurs. The Progress Tests and Re-tests are found in the online Teacher Resource.

- The teacher will decide when testing occurs. The Progress Tests and Re-tests are found in the on line Teacher Resource.

Suggested Program	Term 1	Term 2	Term 3	Term 4
Number and algebra	1:01-1:15	-	1:16-1:21	1:22-1:26
Operations and algebra	2:01-2:08	2:09-2:32	2:33-2:50	2:51-2:60
Measurement	3:01-3:10	3:11-3:12	3:13-3:21	3:22-3:26
Space	-	4:01-4:15	4:16-4:18	4:19-4:23
Statistics and probability	5:01-5:03	5:04-5:07	5:08-5:16	5:17-5:23
Total number of pages:	36	45	45	32

- See the Teacher Resource for a more detailed suggested program.
- The suggested program aligns with the Mentals book Progress Tests and Re-tests.

Contents cross-reference

Number and algebra

ASM_AC3e_ SB5_Header_09

Measurement and space

5 Dictionary

abacus

An instrument used for counting and calculating.

am (ante meridiem)

Any time between midnight and midday.

- The time is 25 past 7 in the morning. It is 7:25 am.

analog time

The time shown on a clock face.

- 13 minutes to 6 is the time on this analog clock.

angle

The amount of turning between two arms about a common point.

acute	right	obtuse		
between 0°				
and 90°			$\quad 90^{\circ} \quad$	between 90°
:---:				
and 180°				

anticlockwise and clockwise

The direction of a turn.

area

The size of a surface.
Area is measured in square units.

- square centimetres: cm2
- square metres: \mathbf{m}^{2}

ascending order

Arranged in order from least value to greatest value.

Average $=$ (sum of scores) \div (number of scores)
axis of symmetry
See line of symmetry.
A line that divides a picture in half so that each half is the mirror image of the other part.

- B- - One axis of symmetry

The plural of axis is axes.

billion

A thousand millions.

- 1000000000

capacity

The amount that a container can hold.

- The capacity of this juice bottle is 250 mL .

centimetre (cm)

A unit of length equal to one hundredth of a metre.

- $100 \mathrm{~cm}=1 \mathrm{~m}, 1 \mathrm{~cm}=10 \mathrm{~mm}$

$$
\rightarrow|1 \mathrm{~cm}| \leftarrow
$$

chance

The chance (or probability) of something happening is its likelihood of happening.

- If you toss a coin, there is an even chance of tossing a head.
See probability.

compass directions

The needle of a compass points north (N).

composite number

A number that has more than two factors - 9 is composite because it has three factors:

1, 3 and 9.

cone

A three-dimensional object with a circular base that tapers to a point.

coordinates

Pairs of letters or numbers used to show position on a grid.

- This position is D3 or (D, 3).

cross-section
A face that is exposed when a 3D object is cut through.

cube

A three-dimensional object that has six equal square faces, eight vertices and twelve equal edges.

cube number

- 2 cubed $=2^{3} \leftarrow$ Inde $=2 \times 2 \times 2$

s.

cubic centimetre (cm^{3})

A unit of volume equal to the volume of a cube of side length 1 cm .

cubic metre (m^{3})

A unit of volume equal to the volume of a cube of side length 1 m .

cylinder

A three-dimensional object with two equal circular faces and one curved surface.

decimal notation

The decimal point separates the whole number
from the fraction part.
$7 \cdot 5$
0.7 means 7 tenths.
6.5 means 6 ones and 5 tenths.
3.07 means 3 ones and 7 hundredths.
decimal point

denominator

The bottom number of a fraction.
It tells the number of equal parts there are in the whole.

descending order

Arranged in order from greatest value to least value.

- \$5.96
$\$ 4.75$
$\$ 2.30$
\$1.65
(most) (least)
diagonal
A line that joins any two non-adjacent corners of a polygon.

digital time

Time expressed using digits.

- This digital clock shows 24 minutes past 10.

digits

Symbols used to write a number

- 6 Six is a 1-digitnumber.
- 47 Forty-seven is a 2-digit number.

divisible

To have no remainder when divided.

- 30 is divisible by 3 .

division (\div)

Breaking up groups into equal parts.
a How much will each receive if you share between 2.
b How many groups of 2 can be made?

edge

Two faces of a 3D object meet at an edge.

equivalent fractions

These are equal. They refer to the same part of the whole.

estimate (estimation)
A good guess.

even number

Any number that is a multiple of two and can be grouped in twos. They end is $0,2,4,6$ or 8 .

- 16, 300, 4394

The other counting numbers are odd.

expanded notation

A way of writing numerals to show the place value of each digit.

- $137=(1 \times 100)+(3 \times 10)+7$

face

A flat surface of a three-dimensional object that is bounded by only straight sides.

Face

Face

factor

A factor of a number divides the number exactly, leaving no remainder.

- The factors of 12 are $1,12,2,6,3$ and 4 .

flip (reflection)

To turn over.

- A mirror image is made.

fraction

A part of a whole or group.

Equivalent fraction

Fractions of equal size.

- $\frac{1}{2}=\frac{5}{10}=\frac{7}{14}=\ldots$

Improper fraction

A fraction which has a numerator that is bigger than the denominator.

- $\frac{9}{8}$

Mixed numeral

A numeral that has a whole number part and a fraction part.

- $1 \frac{2}{3}$

gram (g)

A unit of mass.

- 1 kilogram $=1000$ grams,

graphs

- Bar graph A graph which uses horizontal bars to compare the size of groups.

Colour chosen

People present

- Divided bar graph A bar is divided to show the make-up of the data.

- Dot plot

A graph which uses dots to compare the size of groups.

- Line graph

A continuous line shows the connection between variables.

stands for $\$ 10$

A circle is cut into sectors to show the parts of a whole.

greater than (>)

A way of showing that a number is larger than another number.

- $7>3$ means 7 is greater than 3 .

See also less than (<).

hectare (ha)

A unit of area equal to a square with sides of 100 m .

- 1 ha $=10000 \mathrm{~m}^{2}$

horizontal

- Parallel to the horizon.
- Level or flat.
- Any direction at right angles to the vertical.

inverse operations

Adding 8 is the opposite (the inverse) of subtracting 8 .

- $100+8-8=100$

Multiplying by 2 is the opposite (the inverse) of dividing by 2 .

- $4 \times 2 \div 2=4$

jump strategy

Adding or subtracting numbers, jumping by hundreds, tens and ones.

- $52-14=38$

kilo (k)

Kilo means 1000.

kilogram (kg)

The basic unit of mass, equal to 1000 grams.

- $1 \mathrm{~kg}=1000 \mathrm{~g}$

kilometre (km)

A unit of length equal to one thousand metres.

- $1 \mathrm{~km}=1000 \mathrm{~m}$

less than (<)

A way of showing that a number is smaller than another number.

- $3<7$ means 3 is less than 7 .

See also greater than

line of symmetry

A line that divides something in half so that each half is a mirror image of the other part.

Line of symmetry

litre (L)

A unit of capacity (or volume) used for the measurement of liquids.

- $1 \mathrm{~L}=1000 \mathrm{~mL}$

map or plan

A picture of an area viewed from above.

mass
The amount of matter in an object, a measure of how heavy something is.

mean
The arithmetic average.

$$
\text { mean }=\frac{\text { sum of scores }}{\text { number of scores }}
$$

See also average.

metre (m)

The basic unit of length, equal to 100 centimetres.

- $1 \mathrm{~m}=100 \mathrm{~cm}$

millilitre (mL)

A unit of capacity (or volume) equal to one thousandth of a litre.

- $1000 \mathrm{~mL}=1 \mathrm{~L}$

millimetre (mm)

A unit of length equal to one tenth of a centimetre, or one thousandth of a metre.

- $10 \mathrm{~mm}=1 \mathrm{~cm}$
- $1000 \mathrm{~mm}=1 \mathrm{~m}$

million

A thousand thousands

- 1000000

mixed numeral

A numeral that has a whole number part and a fraction part.

- $4 \frac{1}{8}$

mode

The number that occurs the most often in a set of numbers.

- $2,3,3,3,4,4,5,7$

The mode is 3 .

multiple

The result of multiplying a counting number by another counting number.

- The multiples of 5 are $5,10,15,20, \ldots$

net

A flat shape that can be folded to make a three-dimensional object.

object

The term used to describe a three-dimensional shape.

Hexagonal prism

Cone

octagon

A polygon with eight sides.

Regular octagon

Irregular octagon

See also polygon.

parallel lines

Straight lines on the same flat surface that do not meet.

parallelogram

A shape with 4 sides such that the pairs of opposite sides are parallel and equal.

pentagon

A polygon with five sides.

Irregular pentagon

per cent (\%)

Out of one hundred.

- $\frac{37}{100}=0.37=37 \%$ or 37 per cent

perimeter

The distance around the outside of a shape; the boundary.

$$
\text { - } \begin{aligned}
\text { Perimeter } & =2 m+3 m+2 m+5 m \\
& =12 m
\end{aligned}
$$

perpendicular lines

Lines that meet
at right angles.

place value

The column value of a digit.

- $396=$| Hundreds | Tens | Ones |
| :---: | :---: | :---: |
| 3 | 9 | 6 |

pm (post meridiem)

Any time between midday and midnight.

- The time is 20 past 1 in the afternoon. It is $1: 20 \mathrm{pm}$.

Afternoon

polygon

A two-dimensional shape with three or more straight sides, such as a triangle, quadrilateral, pentagon etc.

prism

A three-dimensional object with a uniform crosssection. The ends are identical shapes and all other faces are rectangles. Prisms are named by the shape of their ends.

Triangular prism

Hexagonal prism

probability

The probability (or chance) of something happening is its likelihood of happening.

- The probability of rolling an even number on a dice is 50%.

product

The answer to a multiplication question.

- The product of 8 and 9 is 72 .

protractor

An instrument used for measuring and drawing angles.

A three-dimensional object that has a polygon for a base and triangles for all other faces.
Pyramids are named by the shape of their base.

Pentagonal pyramid

quadrilateral

A two-dimensional shape with four straight sides.

quotient

The answer when one number is divided by another.

random selection

Choosing without looking.
Each item has an equal chance of being chosen.

reflection

See flip.

regular and irregular shapes

Regular shapes have all sides and all angles equal. Irregular shapes do not.

Regular shape

Irregular shape

remainder

The number that is left over after sharing or dividing.

- 22 cups shared among 5 people gives 4 cups each, remainder 2.

rhombus

A shape with 4 sides, opposite sides parallel, all sides equal.
rigid shape
A model that cannot be pushed out of shape because triangles have been used in its construction.

Roman numerals

A number system devised by the ancient Romans.
Roman numerals use letters for numbers:

I	V	X	L	C	D	M
1	5	10	50	100	500	1000

- $\mathrm{XXVIII}=28$

rounding

Writing a number to the nearest $5,10,1000, \ldots$

- 3786 rounded to the nearest 100 is 3800 .
- 35000 rounded to the nearest ten-thousand is 40000 .

skip counting

Counting on, adding the same number each time. - $5,10,15,20,25, \ldots$ is skip counting by 5 .

slide (translation)

To move a shape in any direction without changing its orientation.

sphere

A three-dimensional object that is ball-shaped and round. All points on the surface of a sphere are the same distance from its centre.

split strategy

Adding numbers by splitting them into their parts.

- $36+52=30+6+50+2$

$$
\begin{aligned}
& =(30+50)+(6+2) \\
& =80+8 \\
& =88
\end{aligned}
$$

Spreadsheet

A table produced by a computer program used for organising data, allowing rapid calculations and the production of graphs.

square centimetre (cm^{2})

A unit of area equal to a square with sides of 1 cm .

square kilometre ($\mathbf{k m}^{2}$)

A unit of area equal to a square with sides of 1 km .

- $1 \mathrm{~km}^{2}=1000000 \mathrm{~m}^{2}, 1 \mathrm{~km}^{2}=100 \mathrm{ha}$

square metre (\mathbf{m}^{2})

A unit of area equal to a square with sides of 1 m .

- $10000 \mathrm{~m}^{2}=1 \mathrm{ha}$

sum

The answer when you add numbers.

surface

The outside layer of a three-dimensional object. A surface can be flat or curved.

See also face.

survey or questionnaire
A list of questions used to discover information.

symmetry

A balanced arrangement
Line symmetry
A property of a figure where one half is the mirror image of the other.

- Line (or Axis) of symmetry

A line that divides a figure into two parts that are mirror images of each other.

- Rotational symmetry

A property of a figure where it can be spun about a point so that it repeats its shape more than once in a full turn.

tally

To keep count by making a markfor each item. To make counting easy, the marks are drawn in groups of five with each fifth mark crossed over the other four marks.

- HH HH HI III =18

tangram

A traditional Chinese puzzle. A square is cut into seven pieces that can be rearranged to make different pictures.

temperature

A measure of how hot or cold something is. Temperature is usually measured in degrees Celsius (${ }^{\circ} \mathrm{C}$).

- Water freezes at $0^{\circ} \mathrm{C}$.
- Water boils at $100^{\circ} \mathrm{C}$.

tessellation

A pattern of identical shapes that fit together without gaps or overlaps.

thermometer

An instrument used for measuring temperature.

three-dimensional (3D) object

Objects are three-dimensional. They have length, width and height.

Time (months of the year)

The number of days in each month:

30 days has September, April, June and November. All the rest have 31, except February alone, which has 28 days clear and 29 days each leap year.

timeline

Shows a sequence of events in time.

trapezium

A quadrilateral with one pair of parallel sides.

triangle

A two-dimensional shape with three straight sides and three angles.

Equilateral

Isosceles

Right-angled

Scalene

Scalene

Scalene triangles have no sides equal.
See also polygon.

turn (rotation)

To rotate a shape about a given point.

twenty-four hour time

Time shown as a 4-digit number, the first two digits indicating the hourand the second two digits indicating minutes.

- 13:20 is 20 past in the afternoon, or 1:20 pm.

vertex

A point at which two or more lines meet to form a corner on a 2D shape or 3D object.

The plural of vertex is vertices.

vertical

- At right angles to the horizontal.
- Straight up and down.
- The direction in which an object falls under gravity.

volume

The amount of space occupied by a 3D object.

Volume $=10$ cubic units
1 cubic centimetre $=1 \mathrm{~mL}$

width or breadth (dimensions)

The distance from side to side.

Length

Width

trapezium
one set of parallel lines

rhombus
all sides equal (a diamond)

kite two pairs of equal sides

All of the blue shapes are quadrilaterals.

3D (three-dimensional) objects

Solid objects are three-dimensional. They have length, width and height.
sphere
A sphere is curved and round.
cube
A cube has 6 square faces, 8 vertices and 12 straight edges.

cylinder
A cylinder has 2 circular flat surfaces and 1 curved surface.

cone
A cone has 1 circular flat surface and 1 curved surface.

pyramid
A pyramid has triangular faces joined around a base.

prism
A prism has rectangular faces joining two identical bases.

octagon 8 sides 8 corners

4 sides and 4 corners.

quadrilaterals

parallelogram two sets of parallel lines opposite sides equal

- The population of the United Kingdom in 2023 was 68878820

Zero is a place holder.

- The population of the United States of America in 2023 was 336406770.
(1) Read these numbers and then write them in the place-value chart.

A eight hundred and sixty-nine thousand

500 K is sometimes used for 500000.

B four million, eight hundred and one thousand, six hundred and forty-nine
C thirty-six million, three hundred and forty-one thousand, five hundred and seventy-five
D fifteen million, six hundred and fifty thousand

ten millions								
A millions			hundred thousands	ten thousands	thousands	hundreds	tens	ones
B								
C								
D								

a Order the numbers, in $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} of this table, from smallest to largest.
b Write the numeralthat is three million more than \mathbf{D}. \square
c Write the numeral that is one million five hundred thousand more than \mathbf{C}. \square
(2) Write the numeral for:
a $6000000+300000+70000+2000+800+40$
b 7 million 500 thousand
c 18 million 120 thousand 452

d $(3 \times 10000000)+(6 \times 1000000)+(7 \times 100000)+(5 \times 10000)+(2 \times 1000)$
e the 2023 population of Queensland (5 million 360 thousand)
f the 2023 population of Victoria (6 million 829 thousand)

- The population of the World in 2023 was over 8 billion people.

8 billion

8 billion		45 million			One billion is 1000 millions				
	8 8 8 8 -								
					311 thousand		447		
					8				
					\bigcirc		\bigcirc	\bigcirc	-
	8	0	4	5	31	1	4	4	7

1 Read these numbers and then write them in the place-value chart.
A five hundred and sixty-four thousand and twenty-seven

Empty columns are filled with zeros.

B ten million, two hundred and fifteen thousand, nine hundred and eighty-two
C two hundred and fifty million, nine hundred and forty thousand
D thirty-six billion eight hundred and fourteen million
E twelve billion six hundred and fifty-five million, seven hundred thousand

	billions				millions	thousands		ones		
	H	T	0	H		T	0	H	T	0
A										
B										
C										
D										
E										

- Order the numbers in this table from smallest to largest.

(2) Write the numeral for:

a 860 million	\square
c 14 billion	
e 308 million	\square

1 million has 6 zeros.

1 billion has 9 zeros

\square
b 70 million
d 2 billion
f 100 billion
g the distance to the Sun, 150 million 238 thousand km
h the population of India in 2023, 1 billion 417 million 792 thousand 656
i the distance to the star, Proxima Centauri, 40 billion 208 million km
j The distance light travels in one hour, 1 billion 71 million 360 thousand km

- Rounding to the nearest million

 When rounding, look at the next figure. If it is 5 or more, round up.71542800 rounds to 72000000
13499000 rounds to 13000000 .

- Write 3475040 in expanded notation.
$3000000+400000+70000+5000+40$
- Complete: $167000=150000+$ \square

(1) Write the numeral for:
a $6000000+900000+40000+9000+200+70+1$
b $10000000+7000000+300000+2000+600+80$
c $80000000+900000+5000+700+80+$
d $90000000+9000000+900000+90000+9000$

(2) Write the following in expanded notation.
a 3475600
b 847231
c 26809050
d 80520300
(3) Round each to the nearest million.

(4) Complete:
\square
(5) Use partitioning and doubling to answer these.
\square
b $250000+266423=$

(1)

a What is the denominator of $\frac{43}{100}$? \square
If $\frac{92}{100}$ is blue, $\frac{8}{100}$ is not blue. b What is the numerator of $\frac{43}{100}$? \square
 c What fraction is not coloured?

d What is the
numerator of $\frac{7}{10}$? \square
What is the
denominator of $\frac{7}{10}$?
(2) Complete.
a $\frac{1}{2}$ and $\frac{1}{2}$ makes \square whole.
b $\frac{1}{4}$ and
makes 1 whole.
c and $\frac{2}{3}$ makes 1 whole.
d $\frac{2}{5}$ and $\frac{3}{5}$ makes \square whole.
e $\frac{3}{8}$ and makes 1 whole.

(3) a if $\frac{3}{4}$ of our class come to school by bus, what fraction does not come by bus?
b If $\frac{7}{10}$ of the class is present, what fraction is absent?
c If a water tank is $\frac{5}{8}$ foll, what fraction of the water tank is empty?
d $\frac{3}{5}$ of a pizza is left. What fraction has been eaten?
e $\frac{9}{10}$ of my pavers have arrived. What fraction still needs to arrive?
f If $\frac{3}{8}$ of a cake has been eaten, what fraction is left?

(4) \square a Colour $\frac{1}{4}$ of this bar. What is $\frac{1}{4}$ of 12 .

b Colour $\frac{1}{3}$ of this bar. What is $\frac{1}{3}$ of 12 .
c Which fraction is larger, $\frac{1}{4}$ or $\frac{1}{3}$? \square
d Colour $\frac{3}{10}$ of this bar red. Colour $\frac{5}{10}$ of this bar blue.

(1) Use dots to show the fractions on the number line. Use < or > to complete the sentence.
a $\frac{1}{2}$ and $\frac{1}{4}$

b $\frac{1}{10}$ and $\frac{1}{3}$

c $\frac{1}{2}$ and $\frac{1}{8}$

d $\frac{1}{6}$ and $\frac{1}{3}$

e $\frac{1}{10}$ and $\frac{1}{5}$

$\frac{1}{6} \longrightarrow \frac{1}{3}$

The order of unit fractions

(2) Put each group of fractions in order, from smallest to largest.
a $\frac{1}{2}, \frac{1}{5}, \frac{1}{4}$
b $\frac{1}{100}, \frac{1}{10}, \frac{1}{20}$
c $\frac{1}{3}, \frac{1}{8}, \frac{1}{2}$
d $\frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \frac{1}{12}$ \square
(3) Match each fraction with a part of the circle.

(4) Match each fraction with a part of the decagon.

(5) For unit fractions, the greater the denominator, the \square the fraction.

a

b

\square or \square
(2) Write the mixed number and the decimal for each part.
a

b

C

d

(3) Write each mixed number as a decimal.

a $2 \frac{37}{100}$	$b 1 \frac{76}{100}$
d $9 \frac{95}{100}$	e $7 \frac{81}{100}$

c $6 \frac{8}{100}$ \square
f $5 \frac{3}{100}$

(4) Write each decimal as a mixed number.
a $6 \cdot 25$
b 3.04
c 9.42
\square
(6) Colour 1.05 of these. Write the fraction.

								-										
								-										
								-										
								-										
								-										
\square								\square										-

\square
(5) Colour 2.75 of these. Write the mixed number.

(1) Use decimals to write:

(2) Match each fraction with the correct decimal.
a

$\frac{5}{10}$	0.5
$\frac{8}{100}$	0.2
$\frac{2}{10}$	0.08

b

$2 \frac{3}{10}$	2.03
$2 \frac{93}{100}$	2.93
$2 \frac{3}{100}$	2.3

C

$4 \frac{6}{10}$	4.5
$4 \frac{5}{100}$	4.6
$4 \frac{5}{10}$	4.05

(3) Write the decimal for:
a $\frac{9}{10}$
e $\frac{4}{10}$

- $2 \frac{8}{10}$

c $\frac{12}{100} \square$
g $2 \frac{8}{10} \square$
\square
k $6 \frac{9}{10}$
d $\frac{34}{100}$ \square
h $1 \frac{12}{100}$
1 $2 \frac{87}{100}$
(4) Complete the number lines.

See Extra Support 2 (Place value in decimals).
100% is one whole. 50% is one half. 25% is one quarter.

50 out of 100

50 hundredths

50\%

64\%

Phones use percentages to show charge remaining.
(1) What percentage of each square is coloured?

What percentage of each square in Question 1 is not coloured?

(3) Complete these equivalents:

Percentages in the environment

- Collect examples of percentages from newspapers and food packages.
- Discuss different ways in which percentages are used.
(1) For each square, colour the percentage shown.
a

10\%
b

25\%
c

20\%
g

75%

90\%
(2) What percentage of each square in Question 1 should be not coloured?
b \square
c \square g \square h \square
(3) Complete the following.

Converting fractions to decimals
(4) Use a caleulator to divide the denominator into the numerator.

Now calculate:
a $\frac{65}{100} \square$
f $\frac{25}{100} \square$
k $\frac{10}{100} \square$
b $\frac{15}{100} \square$
g $\frac{5}{100} \square$
I $\frac{37}{100} \square$
c $\frac{95}{100} \square$
h $\frac{60}{100} \square$
m $\frac{91}{100} \square$
d $\frac{45}{100} \square$
i $\frac{80}{100} \square$
n $\frac{20}{100} \square$
e $\frac{75}{100}$
j $\frac{40}{100}$

- $\frac{100}{100}$
$\%$

Diane, Lyn and Alan shared two chocolate bars fairly as they played cards. What fraction of a whole chocolate bar did Alan eat?

Question:

Alan ate one third of each bar, so he ate two thirds of a bar.

$$
2 \div 3=\frac{2}{3}
$$

A fraction can be used as a division statement.
(1) Students shared two chocolate bars fairly. How much chocolate would each eat if there were: a 6 students? \square b 4 students? \square c 2 students? \square d 8 students? \square
(2) Write each of these division questions as a fraction.
a $3 \div 4 \square$
b $5 \div 8$ \square c $1 \div 2$ d $4 \div 5$ \square
(3) Write each fraction as a division.

(4) a What fraction of the race does Rona still have to travel?
b What fraction of the race does Alfie still have to travel? \square

\square	
\square	
\square	

$$
\begin{aligned}
& \frac{50}{100}=\frac{1}{2}=0 \cdot 50,0 \cdot 5 \text { or } 50 \% \\
& \frac{25}{100}=\frac{1}{4}=0 \cdot 25 \text { or } 25 \% \\
& \frac{75}{100}=\frac{3}{4}=0.75 \text { or } 75 \% \quad \frac{1}{3}=33 \frac{1}{3} \%
\end{aligned}
$$

(5) Heather ate $\frac{1}{4}$ of a cake and Tome ate $\frac{1}{2}$ of another cake.

Heather said she ate more cake than Tom. How can this be so?

When the number has a whole number part and a fraction part, it is a
When the numerator is larger than the denominator, it is an improper f

- To change a mixed number into an improper fraction, multiply the whole
number by the denominator of the fraction part, then add the fractions.
When the number has a whole number part and a fraction part, it is a
When the numerator is larger than the denominator, it is an improper
To change a mixed number into an improper fraction, multiply the whole
number by the denominator of the fraction part, then add the fractions.

$$
3 \frac{1}{4}=\frac{3 \times 4}{4}+\frac{1}{4}=\frac{13}{4}
$$

$$
2 \frac{3}{10}=\frac{2 \times 10}{10}+\frac{3}{10}=\frac{23}{10}
$$

(1) Change the mixed number into an inproper fraction
a $4 \frac{1}{4}$ \square
b $1 \frac{1}{4}$ \square
c $2 \frac{1}{2}$ \square
d $3 \frac{2}{5}$ \square
e $1 \frac{4}{5}$ \square
f $2 \frac{3}{4}$

h $2 \frac{2}{3}$
\square
i $1 \frac{7}{10}$ \square
j
k $2 \frac{5}{10}$ \square
I $4 \frac{8}{10}$ \square

Four and a half pies!
Multiply then add.

- To change an improper fraction into a mixed number, divide the bottom into the top.

a $\frac{9}{4}$
b $\frac{7}{3}$
\square
c $\frac{5}{2}$
\square
d $\frac{7}{4}$ \square
e $\frac{11}{3} \square$

g $\frac{14}{5} \square$
h $\frac{17}{2}$

i $\frac{17}{10} \square$
k $\frac{36}{10}$ \square
I $\frac{55}{10}$
\square

Divide bottom into top.

(1) Add these fractions. Colour part of the last grid to match your answer.
a

$\frac{2}{5}+\frac{1}{5}$

(2) Use the fraction card to find the answers. (Remember: $\frac{4}{10}+\frac{6}{10}=\frac{6}{10}+\frac{4}{10}$)

a $\frac{1}{10}+\frac{5}{10}=$ \square b $\frac{3}{10}+\frac{4}{10}$
e $\frac{5}{10}+\frac{2}{10}=\square$ f $\frac{4}{10}+\frac{5}{10}=$
$\frac{2}{10}+\frac{7}{10}=\square$
g $\frac{7}{10}+\frac{1}{10}=\square$
d $\frac{6}{10}+\frac{3}{10}=\square$
h $\frac{1}{10}+\frac{8}{10}=$

a $\frac{2}{8}+\frac{6}{8}=$
 b $\frac{7}{8}+\frac{4}{8}=\square$
C $\frac{5}{8}$
$\frac{5}{8}+\frac{5}{8}=$
d $\frac{3}{8}+\frac{6}{8}=\square$
(4) Answer true or false.
a $\frac{6}{8}>\frac{3}{8}$
b $\frac{7}{8}<\frac{6}{8}$ \square c $\frac{8}{8}<\frac{5}{8}$ \square d $\frac{5}{8}>\frac{9}{8}$ \square
e $\frac{9}{10}>\frac{6}{10}$ \square f $\frac{5}{10}<\frac{9}{10}$ \square g $\frac{13}{10}>\frac{11}{10}$ \square h $\frac{8}{10}>\frac{12}{10}$ \square
(5) a Sharen ate $\frac{3}{12}$ of a block of chocolate and Francis ate $\frac{5}{12}$ of the same block. How much of the block did they eat?
b Ron used $\frac{4}{10}$ of the paper. Eva used $\frac{5}{10}$. How much is left?

We must use fractions of the same whole.
(1) Subtract these fractions. Colour part of the grid to match your answer.
a

b

$\begin{array}{lll}\frac{5}{8} & - & \frac{1}{8}\end{array}$
C

$\frac{3}{10}$
e

$\frac{7}{8}$

(2) Use the fraction card
 to find the answers.
a $\frac{3}{10}-\frac{1}{10}=$

$\frac{5}{10}-\frac{3}{10}=\square$ e $\frac{8}{10}-\frac{7}{10}=$
d $\frac{9}{10}-\frac{5}{10}=\square$
h $\frac{7}{10}-\frac{4}{10}=$

$$
\begin{aligned}
& \text { c } \frac{7}{10}-\frac{2}{10}=\square \\
& \text { g } \frac{4}{10}-\frac{3}{10}=\square
\end{aligned}
$$

\square

to find the answers.
a $\frac{7}{8}-\frac{3}{8}=$
b $\frac{5}{8}-\frac{3}{8}=\square$
c $\frac{6}{8}-\frac{2}{8}=\square$
d $\frac{4}{8}-\frac{1}{8}=\square$
e Tim ate $\frac{1}{8}$ of a block of chocolate. How much was left? \square
f Mum gave me $\frac{3}{5}$ of her money. What fraction did she keep? \square
(4) Answer true or false.
a $\frac{2}{8}<\frac{5}{8}$ \square b $\frac{6}{8}<\frac{5}{8}$ \square c $\frac{1}{8}<\frac{3}{8}$ \square d $\frac{7}{8}>\frac{4}{8}$ \square
(1) Write the numeral for the number shown on each abacus.
a

(2) Write each number on the place-value chart. a three point one nine seven
b five point six three eight
c nine point two four nine
d six point five foureight
e eight point three five two
f two point seven one nine

$$
\frac{4}{5}+\frac{3}{5}=\frac{7}{5}
$$

$$
\frac{16}{10}-\frac{8}{10}=\frac{8}{10}
$$

(1) Write the improper fraction for the mixed numbers:
a $1 \frac{2}{8}=$
b $1 \frac{4}{5}=$
c $1 \frac{3}{4}=$ \square
d $3 \frac{1}{2}=$
e $2 \frac{3}{5}=$ \square f $1 \frac{9}{10}=$ \square
(2) Write the mixed number for the improper fractions:
a $\frac{8}{5}=\square$
b $\frac{4}{3}=\square$
d $\frac{9}{8}=$ \square

$\stackrel{\frac{1}{4}}{\stackrel{2}{4}}$

Improper fraction: $\frac{11}{8}$
Mixed number: $1 \frac{3}{8}$
(3) Add these fractions.

(4) Subtract these fractions.
a $\frac{3}{4}-\frac{1}{4}=\square$
b $\frac{4}{5}-\frac{2}{5}=\square$
c $\frac{5}{10}-\frac{2}{10}=\square$
d $\frac{5}{8}-\frac{3}{8}=\square$
e $\frac{3}{5}-\frac{1}{5}=$
f $\frac{9}{8}-\frac{3}{8}=\square$
g $\frac{4}{3}-\frac{2}{3}=$
h $\frac{7}{4}-\frac{6}{4}=$
k $\frac{14}{10}-\frac{9}{10}=$
| $\frac{13}{10}-\frac{7}{10}=$ \square

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\frac{1}{3}$ | | $\frac{2}{3}$ | | |

(1) Use the number lines to show an equivalent fraction for:
a $\frac{1}{3}$
b $\frac{9}{9}$

e $\frac{2}{6}$

f
c $\frac{3}{9}$
g

2 Use the number lines above to answer true or false.
a $\frac{1}{6}=\frac{2}{9}$ \square
b $\frac{2}{3}=\frac{6}{9}$ \square
c $\frac{2}{3}=$
$\frac{3}{9}$
d $\frac{6}{9}=\frac{4}{6}$ \square
h $\frac{5}{6}=\frac{2}{3}$ \square
e $\frac{3}{3}=\frac{9}{9}$ \square
f $\frac{3}{6}=\frac{5}{9}$ \square
(3) Complete the number lines.
a

b

(4) Use the number lines above to answer true or false.
a $\frac{1}{5}=\frac{2}{10} \square$
b $\frac{6}{9}=\frac{4}{6} \square$
c $\frac{1}{3}=\frac{1}{6}$ \square d $\frac{2}{5}=\frac{4}{10}$ \square
e $\frac{2}{3}=\frac{4}{6} \square$
f $\frac{3}{6}=\frac{6}{9} \square$
g $\frac{4}{5}=\frac{9}{10}$
h $\frac{3}{5}=\frac{8}{10}$

i $\frac{1}{5}=\frac{1}{10} \square$
j $\frac{2}{3}=\frac{6}{9}$ \square k $\frac{1}{2}=\frac{5}{10}$
| $\frac{5}{6}=\frac{8}{9}$

5 Use the number lines above to write an equivalent fraction for:
a $\frac{1}{3}$
b $\frac{4}{6}$ \square
c $\frac{1}{2}$ \square
d

(1) Complete these to make equivalent fractions.
a $\frac{1}{4}=\frac{\square}{8}$
b $\frac{2}{5}=\frac{\square}{10}$
c $\frac{3}{4}=\frac{\square}{8}$
d $\frac{1}{5}=\frac{\square}{10}$
e $\frac{1}{2}=\frac{\square}{4}$
f $\frac{3}{5}=\frac{\square}{10}$
g $\frac{2}{4}=\frac{\square}{8}$
h $\frac{4}{5}=$

j $1=\frac{\square}{10}$
(2) Complete these to make equivalent fractions.
a $\frac{1}{4} \frac{(x 2)}{(\times 2)}=$
\square
b $\frac{1}{2}$
c $\frac{1}{5} \frac{(\times 2)}{(\times 2)}=\frac{\square}{\square}$
d $\frac{3}{5} \frac{(\times 2)}{(\times 2)}=\frac{\square}{\square}$
e $\frac{3}{4} \frac{(\times 2)}{(\times 2)}=\frac{\square}{\square}$
g $\frac{1}{2} \frac{(\times 2)}{(\times 2)}=\frac{\square}{\square}$
h $\frac{2}{5} \frac{(\times 2)}{(\times 2)}=\frac{\square}{\square}$
i $\frac{1}{3} \frac{(\times 2)}{(\times 2)}=$

k $\frac{2}{3} \frac{(\times 4)}{(\times 4)}=\frac{\square}{\square}$
1 $\frac{4}{6} \frac{(\times 2)}{(\times 2)}=$ \square
(3) Complete these to make equivalent fractions.
a $\frac{1}{3} \frac{(x)}{(x \quad)}=\square$
b $\frac{3}{6} \frac{(x)}{(x)}=\frac{6}{\square}$
c $\frac{2}{3} \frac{(x)}{(x)}=\frac{8}{\square}$
d $\frac{2}{6} \frac{(x)}{(x)}=\frac{4}{\square}$
e $\frac{4}{10} \frac{(x)}{(x)}=\frac{8}{\square}$
f $\frac{3}{5} \frac{(x)}{(x)}=\frac{9}{\square}$
$\operatorname{g} \frac{3}{5} \frac{(x)}{(x)}=\frac{6}{\square}$
h $\frac{1}{4} \frac{(x)}{(x)}=\frac{5}{\square}$
i $\frac{2}{7} \frac{(x)}{(x)}=\frac{6}{\square}$
j $\left.\left.\quad \frac{7}{5} \frac{(x}{(x}\right) \quad\right)=\square \frac{\square}{10}$
$\operatorname{k} \frac{11}{3} \frac{(x \quad)}{(x \quad)}=\square$
1 $\frac{5}{2} \frac{(x)}{(x \quad)}=\square$

Multiply the numerator and denominator by the same number.

1) Write an equivalent fraction for each of these.
a $\frac{1}{3} \frac{(\times 2)}{(\times 2)}=\frac{\square}{\square}$
b $\frac{1}{4} \frac{(\times 3)}{(\times 3)}=\frac{\square}{\square}$
e $\frac{2}{5} \frac{(\times 3)}{(\times 3)}=$

f $\frac{2}{3} \frac{(x 4)}{(x 4)}=$

c $\frac{1}{2} \frac{(\times 5)}{(\times 5)}=$

g $\frac{3}{4} \frac{(x 2)}{(x 2)}$

\square

h
d $\frac{1}{5} \frac{(x 3)}{(x-3)}=$

$\frac{(\times 3)}{(\times 3)}=\frac{\square}{\square}$
$\frac{1}{2} \frac{(x 5)}{(x 5)}=\frac{5}{10}$

Multiplying by $\frac{5}{5}$ is the same as multiplying by 1 .
(2) Complete these.
a $\frac{1}{2} \frac{(\times 4)}{(\times 4)}=\frac{\square}{\square}$
b $\frac{1}{5} \frac{(\times 2)}{(\times 2)}=\frac{\square}{\square}$
c $\frac{1}{3} \frac{(x-3)}{(x 3)}=$
d $\frac{1}{6} \frac{(\times 2)}{(\times 2)}=\frac{\square}{\square}$
e $\frac{2}{3} \frac{(\times 2)}{(\times 2)}=\frac{\square}{\square}$
f $\frac{1}{2} \frac{(x 3)}{(x 3)}=$

9. $\frac{1}{5} \frac{(\times 4)}{(\times 4)}=$

h $\frac{1}{3} \frac{(x 4)}{(x 4)}=$ \square
(3) Multiply both the numerator and the denominator by 2 .
a $\frac{1}{4}=\frac{\square}{\square}$
b $\frac{1}{6}=$

c $\frac{1}{2}=\square$
d $\frac{1}{5}=\frac{\square}{\square}$
e $\frac{1}{3}=\frac{\square}{\square}$
(4) Multiply both the numerator and the denominator by 3 .
a $\frac{1}{6}=$
b
c $\frac{1}{3}=\frac{\square}{\square}$
d $\frac{3}{4}=\frac{\square}{\square}$
e $\frac{4}{5}=\frac{\square}{\square}$
(5) Multiply both the numerator and the denominator by 4.
a

b $\frac{1}{5}=\frac{\square}{\square}$
c $\frac{1}{3}=\frac{\square}{\square}$
d $\frac{3}{4}=\frac{\square}{\square}$
e $\frac{2}{3}=\frac{\square}{\square}$
6) What number has been used to multiply the numerator and denominator in each pair of equivalent fractions below?
a $\frac{1}{2}=\frac{4}{8}$
f $\frac{3}{4}=\frac{6}{8}$
b $\frac{1}{4}=\frac{3}{12}$ \square c $\frac{1}{3}=\frac{3}{9}$ \square d $\frac{1}{6}=\frac{2}{12} \square$
e $\frac{2}{3}=\frac{4}{6}$
g $\frac{1}{5}=\frac{2}{10}$
h $\frac{3}{5}=\frac{6}{10}$

i $\frac{1}{2}=\frac{5}{10}$

j $\frac{1}{3}=\frac{4}{12}$

(7) Complete these equivalent fractions.
a $\frac{1}{2}=\frac{\square}{4}=\frac{\square}{6}=\frac{\square}{8}=\frac{\square}{10}=\frac{\square}{12}$
b $\frac{1}{3}=\frac{\square}{6}=\frac{\square}{9}=\frac{\square}{12}=\frac{\square}{15}=\frac{\square}{18}$

	$\underset{ \pm}{n}$	$\stackrel{\cong}{\check{0}}$	$\xrightarrow{\substack{\text { ¹ } \\ \pm \pm}}$	$$	
		0		2	5
		0	- 4		
		0	- 3	5	
		0	- 0	7	9
	9	9	- 9		
	7	4	- 3	7	5
1	0	0	- 0	4	
	8	0	- 7	2	5

(1) Order these from smallest to largest:
a $0 \cdot 125,0 \cdot 4,0 \cdot 35,0 \cdot 079$ (Use the diagram.)
\square

For c, d and
e, list the
decimals, as in
the diagram.

b $99 \cdot 9,74 \cdot 375,100 \cdot 04,80 \cdot 725$ (Use the diagram.)

(2. True (T) or false (F)?

1 whole

1

$0 \cdot 1$

a $10 \times 0.001=0.01$
b $10 \times 0 \cdot 01=0 \cdot 1$
c $10 \times 0 \cdot 1=1$
d $1000 \times 0 \cdot 001=1$
e $100 \times 0 \cdot 01=1$

f $0 \cdot 2=10 \times 0 \cdot 02$

To round off a decimalo to given decimal place we look at the next digit. If it is 5 ormore we round up. If it is less than 5, we round down.
(3) Round each decimal to 1 decimal place, (that is, to the nearest tenth).
a $4.62 \square$
d $60 \cdot 177 \square$
b $14 \cdot 25$
e $154 \cdot 07$ \square
c 0.447
f $33 \cdot 333$ \square
(4) Round each decimal to 2 decimal places, (to the nearest hundredth).
\square
a $9 \cdot 627$
d $35 \cdot 288$
b $14 \cdot 253$ \square
c 0.145
f 0.415
\square
$3 \cdot 128$ rounds to $3 \cdot 1$ to 1 decimal place.
$0 \cdot 35$ rounds to $0 \cdot 4$ to 1 decimal place.
$3 \cdot 128$ rounds to $3 \cdot 13$ to 2 decimal places.
$0 \cdot 014$ rounds to $0 \cdot 01$ to 2 decimal places.

100	10	1	-		$\frac{1}{100}$	$\frac{1}{1000}$
$\begin{aligned} & \text { n } \\ & \text { 苞 } \\ & \vdots \\ & \end{aligned}$	$\stackrel{\sim}{ \pm}$	$\stackrel{\text { © }}{0}$				
		0	-	1	0	0
		0	-	0	1	0
		0	-	0	0	1
			-			

- Hundredths are 10 times smaller than tenths. $10 \times 0.02=0.2$ Thousandths are 10 times smaller than hundredths. $10 \times 0.002=0.02$

$0.1=100$ thousandths
$0.01=10$ thousandths
$0.001<0.01<0.1$
length of koala in cm
length of platypus in cm
length of lizard in cm
length of echidna in cm

$0.1=100$ thousandths
$0.01=10$ thousandths
$0.001<0.01<0.1$
length of koala in cm
length of platypus in cm
length of lizard in cm
length of echidna in cm

length $=82 \cdot 125 \mathrm{~cm}$
\%

1 a Write the length of each animal on the table above.
length $=29.4 \mathrm{~cm}$
b Write the length of each animal to the nearestucentimetre.

c Write the length of each animal in centimetres correct to 1 decimal place.

d Order the numbers $60,42 \cdot 15,82 \cdot 125$ and $29 \cdot 4$, from smallest to largest.
(2) A small part of the number line has been magnified.

a A dot has been drawn at 9•267. Draw dots at; 9•277, 9•24, 9•212, 9.4, 9 and 9.206.
b Write the number that is halfway between:
$9 \cdot 1$ and $9 \cdot 2$ \square 9.21 and 9.22 \square 9.286 and 9.287 \square
\%

$1-\frac{1}{3}=\frac{2}{3}$

(1) Complete, writing the answers as whole numbers or mixed numerals.
a $\frac{7}{8}+\frac{1}{8}=$ \square
b $\frac{4}{6}+\frac{2}{6}=$ \square c $\frac{2}{3}+\frac{1}{3}=$ \square
d A $\frac{3}{4}+\frac{1}{4}=\square$
e $1 \frac{1}{6}+\frac{5}{6}=$ \square
f $2 \frac{5}{8}+\frac{3}{8}=$ \square g $1 \frac{7}{10}+\frac{3}{10}=$ \square h $2 \frac{3}{5}+\frac{2}{5}=$ \square
i $1 \frac{3}{5}-\frac{3}{5}=\square$
j $2 \frac{7}{10}-\frac{4}{10}=$ \square k $3 \frac{3}{5}-\frac{1}{5}=$
\square
$2 \frac{7}{92}-\frac{3}{12}=$
(2) Complete:
a $1-\frac{1}{6}=\square$
b $1-\frac{1}{10}=\square$
c $1-\frac{1}{8}=$
d $1-\frac{1}{12}=\square$
e $1-\frac{1}{5}=\square$
f $1-\frac{3}{4}=\square$
g $1-\frac{1}{10}=$
h $1-\frac{2}{5}=$
i $1-\frac{2}{3}=\square$
j $1-\frac{5}{6}=$
$k y-\frac{3}{8}=\square$
| $1-\frac{5}{12}=$
\square
(3) Complete:
a $3-\frac{1}{2}=\square$
d $3-\frac{1}{5}=$

g $3-\frac{1}{8}=$

c $2-\frac{1}{6}=\square$
f $4-\frac{1}{12}=$
i $2-\frac{3}{4}=$

(4) Use the diagram to show an equivalent fraction for:
a $\frac{2}{12}=\square$
b $\frac{10}{12}=$
c $\frac{4}{6}=\square$
d $\frac{2}{3}=\square$
e $\frac{8}{12}=$
\square
f $\frac{3}{6}=\square$
(5) Use the diagram in Question 4 to answer true or false.
a $\frac{1}{3}=\frac{4}{12}$ \square b $\frac{8}{12}=\frac{4}{6}$ \square c $\frac{2}{3}=\frac{6}{12}$ \square d $\frac{10}{12}=\frac{5}{6}$
\square
(6) Using the diagram, explain your answers to Questions 4 and 5 to a friend.

To order fractions, use equivalent fractions
To add or subtract fractions, give them the same denominator.
to give them the same denominator.
Order $\frac{3}{8}, \frac{3}{4}, \frac{1}{2}$ and $1 \frac{1}{8}$ smallest first.

-
\qquad

The order is: $\frac{3}{8}, \frac{1}{2}, \frac{3}{4}$ and $1 \frac{1}{8}$.

$$
\begin{aligned}
\frac{3}{8}+\frac{1}{4} & =\frac{3}{8}+\frac{1}{4} \times 2 \\
& =\frac{3}{8}+\frac{2}{8} \\
& =\frac{5}{8}
\end{aligned}
$$

\qquad

In both, we changed the denominators to eighths.
(1) Order these numbers from smallest to largest.
a $\frac{3}{4}, \frac{1}{2}, \frac{1}{4}$
\square
d $\frac{3}{8}, \frac{1}{2}, \frac{3}{4}, \frac{1}{8}$
\square
b $\frac{3}{4}, 1 \frac{1}{4}, \frac{5}{8}$,

e $\frac{7}{10}, \quad 1 \frac{1}{10}, \quad \frac{1}{5}, \frac{1}{2}$

(2) Make the denominators the same before adding.
a $\frac{1}{4}+\frac{3}{8}=\frac{\square}{8}+\frac{3}{8}=$ \square
c $\frac{1}{2}+\frac{1}{4}=$ \square
f $\frac{1}{10}+\frac{1}{5}=$ \square
i $\frac{1}{4}+\frac{7}{8}=\square \frac{3}{5}+\frac{1}{10}=$ \square b $\frac{1}{8}+\frac{1}{2}=\frac{1}{8}+\frac{\square}{8}=$ \square
\square
C $\frac{1}{4}, 1, \frac{9}{8}, \frac{1}{8}$
\square f $\frac{6}{10}, \frac{1}{5}, \frac{3}{2}, \frac{1}{10}$
\square $d \frac{3}{4}+\frac{1}{2}=$

$$
\text { e } \frac{3}{4}+\frac{1}{8}=
$$

$\square \frac{1}{8}+\frac{1}{4}=$ \square h $\frac{3}{5}+\frac{3}{10}=$ \square $\frac{7}{10}+\frac{7}{10}=\frac{14}{10}$ or $1 \frac{4}{10}$
(1) Half of a hexagonal garden has been used to plant seeds. Another sixth of the garden has mature plants. The rest has not been used. What fraction of the garden has not been used?

(2) Our water tank was full yesterday, but my son left the tap running and one-quarter of the water was wasted. How much of our water was left?

(3) Three groups were allocated a section of the stage. We would all perform at the same time. Our group was allocated one-sixth of the stage. How much was left for the other groups to use?
4. We had three strips of blue paper, each 12 cm long and 2 cm wide. Felicity used three-quarters of a strip. I used five-eighths of a strip. How much of the paper did we use?

5 Peter and his brother Tom, climbed to the top of the Sydney Harbour Bridge. When Tom was halfway up, Peter was only three-tenths of the way up. At that time, how much further up was Tom than Peter?
strips
 of the way up

6 Working
Jessica, Felicity and Lachlan entered the cross-country race.
Yellow cones had been placed at the 1 km , 2 km and 3 km marks.

a How far from the start is Lachlan, when he is two-thirds of the way between the second and third cones?
b When Felicity had run three-quarters of a kilometre, Jessica had run one ând a half kilometres. How far apart were they?

(7) Rhonda bought 2 metres of tape. She used half a metre to make a one square-metre unit for measuring, and seven tenths of a metre to repair some books.
a How much tape did she use?
b How much tape was not used?

We can use decimals to write large numbers in millions or billions.

- To write 64500000 as millions, put a decimal point after the 4 in the millions column. $64 \cdot 5$ million We don't need the zeros at the end of the decimals.
This is sixty-four point five million.
- To write 16230000000 as billions, put a decimal point after the 6 in the billions column.
$16 \cdot 23$ billion We don't need the zeros at the end of the decimats.
This is sixteen point two three billion.

billions
millions
Put the point here for millions.

milions thousands the rest

A					5	6	0	0	0	0	0
B				2	5	6	5	0	0	0	0
C			1	2	5	6	0	0	0	0	0
D				6	8	4	0	0	0	0	0
E		3	9	0	0	0	0	0	0	0	0
F		7	1	8	0	0	0	0	0	0	0
G	6	2	4	4	0	0	0	0	0	0	0
H	1	3	7	0	0	0	0	0	0	0	0

(1) Write as millions using a decimal.
 millions millions
c C
 millions
d D
 millions
(2) Write as billions using a decimal.
\square billions
b F \square billions
c G \square billions
d H \square
$1 \mathrm{~m}=1000 \mathrm{~mm}$
$1 \mathrm{~L}=1000 \mathrm{~mL}$
$1 \mathrm{~kg}=1000 \mathrm{~g}$
$1 \mathrm{~km}=1000 \mathrm{~m}$
$4.29 \mathrm{~m}=4290 \mathrm{~mm}$
$2 \cdot 4 \mathrm{~L}=2400 \mathrm{~mL}$
$9 \cdot 22 \mathrm{~kg}=9220 \mathrm{~g}$
$1.75 \mathrm{~km}=1750 \mathrm{~m}$
$3750 \mathrm{~mm}=3.75 \mathrm{~m} \quad 3600 \mathrm{~mL}=3.6 \mathrm{~L}$
$12300 \mathrm{~g}=12 \cdot 3 \mathrm{~kg}$
$7700 \mathrm{~m}=7 \cdot 7 \mathrm{~km}$

(3) Complete these conversions.

70% means 70 out of every 100.
(1) Complete each pattern and write the rule.

$$
\begin{aligned}
& 70 \% \text { of } 100=70 \\
& 70 \% \text { of } 200=140
\end{aligned}
$$

a $120 \%, 100 \%, 80 \%$, \square
\square The rule is: \square
b $\frac{7}{10}, \frac{9}{10}, \frac{11}{10}$,

c $4,3 \frac{8}{10}, 3 \frac{6}{10}$,

The rule is:

d $0.85,0.87,0.89$, \square
\square
\square
e $1 \cdot 6,1 \cdot 5,1 \cdot 4$, \square
\square
\square
The rule is:
The rule is:

f

0.3,

\square

\square \square

The rule is:

The rule is:

The rule is:
i \square

j
 The rule is:

(2) Create your own percentage number pattern using jumps on the number line.
\square

The rule is: \square

[^0]
[^0]: See Extra Support 12 (Number patterns).

