

Key ideas

- In algebra, only like terms can be added or subtracted. Like terms contain identical pronumeral parts.
- To multiply algebraic terms, multiply numbers first and then pronumerals.
- To divide algebraic terms, express the number as a fraction and if possible, cancel the numbers and pronumerals.
- Always look for the lowest common denominator when adding or subtracting algebraic fractions.
- Use the distributive law to expand an expression and, to do this in reverse, factorise the expanded expression.
- To factorise, always look for the highest common factor.

Language

- algebraic expression algebraic fraction common factor denominator distributive law expand factorisation grouping symbols
- highest common factor like terms numerator parentheses pronumeral simplest form simplify

3:01 Content statements

The following Stage 4 content is addressed in this exercise.

Extend and apply the laws and properties of arithmetic to algebraic terms and expressions (ACMNA177)

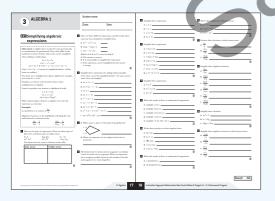
Simplify algebraic expressions involving the four operations (ACMNA192)

Answers

PF	REP QI	UIZ	3:01				
1	9 <i>x</i>	2	x	3	6 <i>xy</i>	4	$5x^2$
5	3x	6	2b	7	8a + 5b	8	$5x + \gamma$
9	$-24a^{2}$	10	$-\frac{a}{3b}$				

Lesson starter

Prep quiz 3:01


Use this as a lesson starter. Basic questions from Exercise 3:01 (1 a–h) could also be included and presented as a starter quiz.

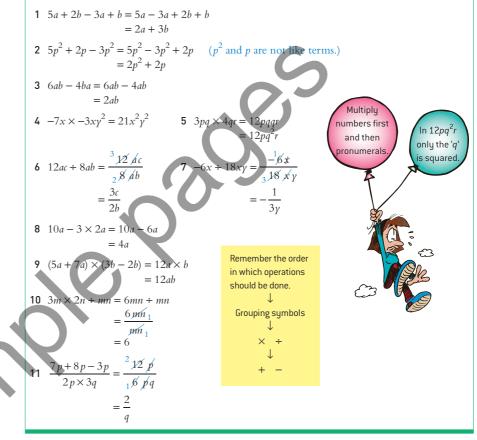
Teaching strategies

My like and unlike terms

To build confidence with adding and subtracting pronumerals, have students sort the expression into a table with headings 'Like terms' and 'Unlike terms'. This encourages students to group the pronumerals before adding or subtracting. Remind students that sometimes expressions cannot be simplified any further. For example: 3x + 2y - 6a.

Homework 3:01

3:01 Simplifying algebraic expressions


PREP QUIZ 3:01

Sin	plify the following.						
1	7x + 2x	2	9x - 8x	3	$3x \times 2y$	4	$5x \times x$
5	$12x \div 4$	6	$10ab \div 5a$	7	3a + 2b + 5a + 3b	8	6x + 2y -
9	$3 \times (-2a) \times 4a$	10	$3a \div (-9b)$				

-x-y

WORKED EXAMPLES

Remember that only like terms may be added or subtracted.

52 Australian Signpost Mathematics New South Wales 9 Stages 5.1–5.3

Teacher's notes

					Answers	
Exercise 3:01					Evereice 2.04	
					Exercise 3:01	
1 Collect the like terms	to simplify these expressi	ons			1 a 5x	b 13 <i>a</i>
a $3x + 2x$	b $8a + 5a$	01101			c 31 <i>p</i>	d 8 <i>x</i>
c $10p + 21p$	d $x + 7x$		'Like' terms contain		e 3 <i>a</i>	f 6b
e $7a - 4a$	f $9b - 3b$		identical		g 10q	h 21 <i>e</i>
g $11q - q$	h $12e + 9e$		pronumeral parts.		i 2p	j 7 <i>x</i>
i $3p + 5p - 6p$	4x + 2x + x		e.g. $3x + 2x$		k 4 <i>x</i>	l 0
k $10x - 9x + 3x$	1 x + 2x - 3x				m a + 4p	n 2 <i>m</i>
m $2a + p - a + 3p$	n $a + m - a + m$	n 💦			o $1 - 3x$	р — 2
o $8 + 2x - 5x - 7$	p $8\gamma - 1 - 8\gamma$	-1	Did you realise		q $3x^2 + x$	r $4p^2 + 5p$
q $x^2 + 2x + 2x^2 - x$	r $p^2 + 4p + 3p^2$		that the + or – sign belongs to the term		s $2q^2 + 4q$	t $2\gamma^2$
s $3q^2 + 8q - 4q - q^2$	t $y^2 + y + y^2 -$		after it?		u $2 - p^2 + p$	v $3a + a^2 + 7$
u $7 - p^2 + p - 5$	v $2a + a^2 + 7 + 3$				w $x - 7 - 3x^2$	x 8 <i>ab</i> – 16
$w 8x - 7 - 7x - 3x^2$	x $5ab - 7 + 3b$	a — 9			2 a 24 γ	b 16 <i>a</i>
2 Simplify these product	ts.				с 6хү	d 32pq
a $8y \times 3$	b $4 \times 4a$	c $3x \times 2y$	d $8p \times 4q$		e 6 <i>ab</i>	f $5x^2$
e $6a \times b$	f $5x \times x$	g 5a × 3a	h $ab \times ac$		g $15a^2$	h a^2bc
i $3pq \times 2p$	j 5mn \times mp	k $4mn \times \frac{1}{2}n$	$1 9b \times a^2$		i $6p^2q$	j 5 <i>m</i> ² <i>np</i>
$\mathbf{m} 6a^2 \times (-7a)$	n $-5x \times -2x$	• $x \times 2y \times 3x$	p $14ab \times (-\frac{1}{2}ab)$		$k 2mn^2$	$l 9a^2b$
\mathbf{q} $(-ab) \times (-bc)$	r $2k \times 3k \times 4k$	s $-2 \times 7x \times -5\gamma$	t $\frac{1}{4}m \times 4n \times (-p)$		$m -42a^3$	n $10x^2$
3 Simplify:					o $6x^2y$	p $-7a^2b^2$
a $12x \div 4$	b $12x \div 4x$	c $9x^2 \div 3$	d $8x \div 8x$		q ab^2c	r $24k^3$
e 15 <i>m</i> ÷ 10 <i>n</i>	f 32 <i>a</i> ÷ 12 <i>b</i>	g 5 ÷ 20 <i>a</i>	h 48 <i>ab</i> ÷ 6 <i>b</i>		s 70 <i>xy</i>	t –mnp
$i a \div 3a$	j 45 <i>ab</i> ÷ 20 <i>ba</i>	\mathbf{k} -20 $p \div 4p$	$l -xy \div xz$		3 a 3x	b 3
$m 14a \div (-a)$	n $(-15x) \div (-5xy)$	\bullet -28mnp ÷ 7mp	p $8a^2b \div 16ab^2$		c $3x^2$	d 1
4 Simplify:					e <u>3m</u>	f $\frac{8a}{}$
a $mn \times np$	b $7 + m + 6 + 3m$	c $14 - 2a + 5$	d $5x^2 \times 0$	ГЛ	2n	3b
e $3xy \times 2yx$	f $8x^2 + 2x + 7x^2 + 3x$		$h -4x \times 7x$		g <u>1</u>	h 8 <i>a</i>
i $15ab - 9ba + ab$	6m - 7m	k $8b + 3b - 11b$	$18ab \div 9bc$		4a	
$m x \div 3x$	n $2pq \times 9pq$	o $3a + b + 2a - c$	p $-3\gamma \times (-5z)$		$i \frac{1}{3}$	j <u>9</u>
q $\frac{1}{2}\gamma + \frac{1}{2}\gamma$	r $m + n - m + n$	s $3a \times 2b \times c$	t $15at \div 10tx$		k -5	$1 - \frac{\gamma}{2}$
						z
5 Write the simplest exp a $(2a + 3a) \times 4$	b $(10x - 3x) \div 7$	c $(9b - 3b) \times 2$	d $(3m + 9m) \div 4$		m -14	n <u>-</u>
e $12x \div (2x + x)$	f $5a \times (10a + 2a)$	g $3m \times (10m - 9m)$				Ŷ
$i 5a \times 7 \div a$	$ 5u \times (10u + 2u) $ $ 3x \times 4y \div 2xy $	k $10a \div 5 \times 3a$	$1 9xy \div 3x \times 2y$		o -4 <i>n</i>	$p = \frac{a}{a}$
$m 2x + 3x \times 4$	n $5x \times 3x + 10x^2$	o $20y - 5 \times 2y$	p $18m - 12m \div 6$		2	2b
q $3 \times 2n + 5n \times 4$	r $7x + 3 \times 2x - 10x$	s $8x \div 4 - x$	t $11m + 18m \div 2$		4 a mn ² p	b 4 <i>m</i> + 13
$6 \times 3x$	$\frac{3p+2p-1p}{2p-1p}$	11y - y	$5a \times 4b \times 2c$		c $19 - 2a$	d 0
$\frac{1}{2x \times 5}$	$\mathbf{v} = \frac{1}{2 \times 2p}$	$\frac{1}{6y+4y}$	x $\frac{10c \times b \times 8c}{10c}$		e $6x^2\gamma^2$	f $15x^2 + 5x$
2000	p		1000000		g 60yz	h $-28x^2$
					i 7ab	j — <i>m</i>
					k 0	$l \frac{2a}{2}$
						С
		-			m $\frac{1}{3}$	n $18p^2q^2$
			3 Algebra	53	o $5a + b - c$	p 15yz
					qγ	r 2 <i>n</i>
					s 6abc	t $\frac{3a}{2x}$
					3 0000	2x

Teaching strategies

Multiplication in algebra

Emphasise that when multiplying pronumerals the terms do not have to be the same. Have students follow these steps.

- Step 1 Write the terms.
- Step 2 Rearrange the expression so that the numbers are at the start and pronumerals are at the end.
- Step 3 Calculate the numbers and then write the pronumerals in alphabetical order without the multiplication sign.

Multiplication symbol

In algebra, we don't write the multiplication symbol. For example, $13 \times w \times y$ is written as 13*wy*.

Division in algebra

- Step 1 Write the division as a fraction.
- Step 2 Try to find the highest common factor and then cancel.
- Step 3 Cancel any pronumerals in the numerator and denominator.
- Step 4 Check that you have fully simplified the expression.

b x

j 16

n

р

v 1

х

d 3*m*

f $60a^2$

 $6\gamma^2$ ι

 $25x^{2}$

16*m*

3xr

20mt

 $\frac{a}{2c}$

h $\frac{15}{7}$

5 a 20a

c 12b

g $3m^2$

 $\mathbf{k} \quad 6a^2$

m 14*x*

ο 10γ

q 26*n*

 \mathcal{X}

 $\frac{9}{5}$ u

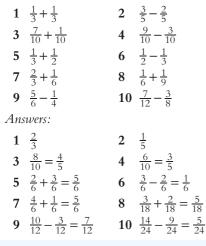
w 1

s

e 4

i i 35

3:02 Content statements

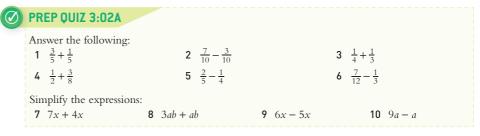

Apply the four operations to simple algebraic fractions with numerical denominators (ACMNA232) [Stage 5.2]

• simplify expressions that involve algebraic fractions with numerical denominators, eg $\frac{a}{2} + \frac{a}{3}, \frac{2x}{5} - \frac{x}{3}, \frac{3x}{4} \times \frac{2x}{9}, \frac{3x}{4} \div \frac{9x}{2}$

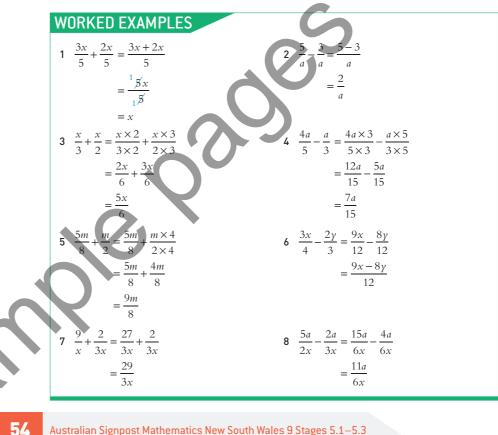
Lesson starter

Adding and subtracting fractions

Revise fractions with the following quick quiz presented on the board.


Answers

PREP QUIZ 3:02A


1 $\frac{4}{5}$	2 $\frac{2}{5}$	3 $\frac{7}{12}$	4 $\frac{7}{8}$
5 $\frac{3}{20}$	6 $\frac{1}{4}$	7 11 <i>x</i>	8 4 <i>ab</i>
9 x	10 8 <i>a</i>		

3:02 Algebraic fractions

3:02A Addition and subtraction

Rewrite each fraction as two equivalent fractions with a common denominator, then add or subtract the numerators.

Australian Signpost Mathematics New South Wales 9 Stages 5.1–5.3

P Digital resources

eBook

- Foundation worksheet 3:02A Simplifying algebraic fractions
- Foundation worksheet 3:02B Simplifying algebraic fractions ProductLink
- Addition and subtraction of algebraic fractions (Drag-and-drop)
- Multiplication and division of algebraic fractions (Drag-and-drop)

Teacher's notes

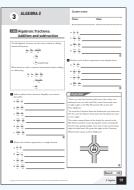
Simplify the following: a $\frac{3a}{2} + \frac{a}{2}$ b $\frac{3x}{5} - \frac{2x}{5}$ c $\frac{a}{3} + \frac{4a}{3}$ d $\frac{9m}{10} - \frac{3m}{10}$ e $\frac{x}{4} + \frac{y}{4}$ f $\frac{5a}{5} - \frac{2b}{3}$ g $\frac{2}{4} + \frac{3}{a}$ h $\frac{7}{7} + \frac{1}{x}$ i $\frac{3}{7} - \frac{2}{7}$ j $\frac{9}{m} - \frac{1}{m}$ k $\frac{5a}{5} + \frac{2a}{a}$ l $\frac{2x}{7} - \frac{3x}{7}$ m $\frac{5}{3} + \frac{7}{3n}$ n $\frac{3}{2x} - \frac{1}{2x}$ o $\frac{8a}{5b} + \frac{2a}{5b}$ p $\frac{7m}{4x} - \frac{3m}{4x}$ Reduce each of these expressions to is simplest form. a $\frac{x}{5} + \frac{x}{5}$ b $\frac{a}{2} + \frac{a}{5}$ c $\frac{y}{2} - \frac{y}{4}$ d $\frac{m}{2} - \frac{m}{4}$ e $\frac{2a}{3} + \frac{a}{2}$ f $\frac{5x}{3} + \frac{2x}{4}$ g $\frac{3n}{3n} - \frac{n}{4}$ h $\frac{4p}{5} - \frac{3p}{10}$ i $\frac{x}{4} + \frac{y}{3}$ j $\frac{2a}{3} - \frac{3b}{2}$ k $\frac{3m}{5} + \frac{n}{2}$ l $\frac{k}{6} - \frac{21}{4}$ m $\frac{2}{x} + \frac{4}{3x}$ n $\frac{1}{3a} + \frac{2a}{4a}$ o $\frac{7}{2m} - \frac{2}{5m}$ p $\frac{5}{8x} - \frac{1}{2x}$ g $\frac{2a}{3x} + \frac{3a}{2x}$ r $\frac{x}{3m} - \frac{2x}{m}$ s $\frac{5m}{2n} + \frac{3m}{4n}$ t $\frac{2x}{2x} + \frac{y}{3a}$ g $\frac{2a}{3x} + \frac{3a}{2x}$ r $\frac{x}{3m} - \frac{2x}{m}$ s $\frac{5m}{2n} + \frac{3m}{4n}$ t $\frac{2x}{2x} + \frac{y}{4a}$ Hidden in the maze of letters there are many words used in mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, at the mathematics. Make a list of the words you find and, a the ma	Simplify the following: a $\frac{3a}{2} + \frac{a}{2}$ b $\frac{3x}{5} - \frac{2x}{5}$ c $\frac{a}{3} + \frac{4a}{3}$ d $\frac{9m}{10} - \frac{3m}{10}$ e $\frac{x}{4} + \frac{y}{4}$ f $\frac{5a}{3} - \frac{2b}{3}$ g $\frac{2}{4} + \frac{3}{a}$ h $\frac{7}{7} + \frac{1}{x}$ i $\frac{3}{2} - \frac{2}{7}$ j $\frac{9}{m} - \frac{1}{m}$ k $\frac{5a}{5a} + \frac{2a}{a}$ h $\frac{7}{x} + \frac{1}{x}$ g $\frac{5a}{3} + \frac{7}{3n}$ n $\frac{3}{2x} - \frac{1}{2x}$ o $\frac{8a}{5b} + \frac{2a}{5b}$ p $\frac{7m}{4x} - \frac{3m}{4x}$ 2 Reduce each of these expressions to its simplest form. a $\frac{x}{3} + \frac{x}{5}$ b $\frac{a}{2} + \frac{a}{5}$ c $\frac{y}{2} - \frac{y}{4}$ d $\frac{m}{2} - \frac{m}{4}$ e $\frac{2a}{3} + \frac{a}{2}$ f $\frac{5x}{3} + \frac{2x}{4}$ g $\frac{3n}{8} - \frac{n}{4}$ h $\frac{4p}{5} - \frac{3p}{10}$ i $\frac{x}{4} + \frac{y}{3}$ j $\frac{2a}{3} - \frac{3b}{2}$ k $\frac{3m}{8} + \frac{n}{2}$ L $\frac{k}{6} - \frac{21}{4}$ m $\frac{2}{x} + \frac{4x}{3x}$ n $\frac{1}{3a} + \frac{2}{4a}$ o $\frac{7}{2m} - \frac{2}{5m}$ p $\frac{5x}{8x} - \frac{1}{2x}$ g $\frac{3a}{3} + \frac{3a}{2x}$ r $\frac{x}{3m} - \frac{2m}{m}$ s $\frac{5m}{2n} + \frac{3m}{4n}$ t $\frac{2x}{2x} + \frac{y}{2}$ Hidden in the maze of letters there are many words used in mathematics. Make a list of the words you find and, at the same time, put a line through the letters you use. Words				Answers	
a $\frac{3n}{2} + \frac{2}{2}$ b $\frac{3x}{5} - \frac{5x}{5}$ c $\frac{n}{3} + \frac{n}{3}$ d $\frac{3m}{10} - \frac{3n}{10}$ e $\frac{x}{4} + \frac{y}{4}$ f $\frac{5a}{3} - \frac{2b}{3}$ g $\frac{2}{a} + \frac{3}{a}$ h $\frac{7}{x} + \frac{1}{x}$ i $\frac{3}{2} - \frac{2}{3}$ j $\frac{9}{n} - \frac{1}{n}$ k $\frac{5a}{x} + \frac{2a}{x}$ l $\frac{2x}{y} - \frac{3x}{y}$ m $\frac{5}{3n} + \frac{7}{3n}$ n $\frac{3}{2x} - \frac{1}{2x}$ o $\frac{8a}{5b} + \frac{2a}{5b}$ p $\frac{7m}{4x} - \frac{3m}{4x}$ Reduce each of these expressions to its implest form. a $\frac{x}{3} + \frac{x}{5}$ b $\frac{a}{2} + \frac{a}{5}$ c $\frac{y}{3} - \frac{y}{4}$ d $\frac{m}{2} - \frac{m}{4}$ e $\frac{2a}{3} + \frac{a}{2}$ f $\frac{5x}{3} + \frac{2x}{4}$ g $\frac{3n}{8} - \frac{n}{4}$ h $\frac{4p}{5} - \frac{3p}{30}$ m $\frac{2}{a} + \frac{3}{3x}$ n $\frac{1}{3a} + \frac{2}{4a}$ o $\frac{7}{2m} - \frac{2}{5m}$ p $\frac{5a}{8x} - \frac{1}{2x}$ g $\frac{5a}{a}$ h $\frac{8}{x}$ i $\frac{1}{y}$ j $\frac{8}{m}$ k $\frac{7a}{x}$ l $\frac{-x}{y}$ e $\frac{2a}{3} + \frac{3}{2x}$ r $\frac{x}{3m} - \frac{2x}{m}$ s $\frac{5m}{2n} + \frac{3m}{4n}$ t $\frac{2x}{3a} + \frac{y}{4a}$ f $\frac{2x}{3a} + \frac{3x}{2x}$ r $\frac{x}{3m} - \frac{2x}{m}$ s $\frac{5m}{2n} + \frac{3m}{4n}$ t $\frac{2x}{2a} + \frac{y}{4a}$ f $\frac{1}{2x} + \frac{1}{4a}$ s $\frac{1}{2x} + \frac{2x}{4a}$ s $\frac{3m}{2n} + \frac{1}{4a}$ f $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{4a}$ s $\frac{1}{2} \frac{2x}{2a} - \frac{2}{2m}$ s $\frac{5m}{2n} + \frac{3m}{4n}$ t $\frac{2x}{2a} + \frac{y}{4a}$ f $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{m}{6}$ g $\frac{n}{8}$ h $\frac{p}{2}$ f $\frac{1}{3x} + 4y$ j $\frac{1}{3} \frac{1}{4a} - 9b$ h $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{8} \frac{1}{8} \frac{1}{8} - \frac{1}{8}$ g $\frac{n}{8}$ h $\frac{p}{2}$ h $\frac{3x + 4y}{2}$ j $\frac{4a - 9b}{6}$	a $\frac{x}{2} + \frac{x}{2}$ b $\frac{x}{3} - \frac{x}{2}$ c $\frac{x}{3} + \frac{\pi}{3}$ d $\frac{m}{10} - \frac{m}{10}$ e $\frac{x}{4} + \frac{y}{4}$ f $\frac{5a}{3} - \frac{2b}{3}$ g $\frac{2}{a} + \frac{3}{a}$ h $\frac{7}{x} + \frac{1}{x}$ i $\frac{3}{2} - \frac{2}{1}$ j $\frac{9}{n} - \frac{1}{n}$ k $\frac{5a}{x} + \frac{2a}{x}$ l $\frac{2x}{x} - \frac{3x}{y}$ g $\frac{5}{3} + \frac{7}{3n}$ n $\frac{3}{2x} - \frac{1}{2x}$ o $\frac{8a}{5b} + \frac{2a}{5b}$ p $\frac{7m}{4x} - \frac{3m}{4x}$ i $\frac{x}{3} + \frac{x}{5}$ b $\frac{a}{2} + \frac{a}{5}$ c $\frac{2}{3} - \frac{y}{4}$ d $\frac{m}{2} - \frac{m}{4}$ e $\frac{2a}{3} + \frac{a}{2}$ f $\frac{5x}{3} + \frac{2x}{4}$ g $\frac{3n}{8} - \frac{n}{4}$ h $\frac{4p}{5} - \frac{3p}{10}$ m $\frac{4}{n}$ n $\frac{1}{x}$ i $\frac{x}{4} + \frac{y}{3}$ j $\frac{2a}{3} - \frac{3b}{2}$ k $\frac{3m}{5} + \frac{n}{2}$ l $\frac{k}{6} - \frac{21}{4}$ g $\frac{2a}{3x} + \frac{3a}{2x}$ r $\frac{x}{3m} - \frac{2x}{m}$ s $\frac{5m}{2n} + \frac{3m}{4n}$ t $\frac{2x}{3a} + \frac{y}{4a}$ FUN SPOT 3:02 THY THIS MATHS-WORD PUZLE Hidden in the maxe of letters must be in a straight line). When you have found all the words where should be four thar once, but you cannot change direction in order to form a word; ch. the letters must be in a straight line). When you have found all the words there should be four thar once, but you cannot change direction in order to form a word; ch. the letters must be in a straight line). When you have found all the words there should be four thar once, but you cannot change direction in order to form a word; ch. the letters must be in a straight line). When you have found all the words there should be four letters can be arranged to form another 'mystery' maths word. The p U the G IM A in p C G IM A is p in A in the p C IM A in p C IM A	Exercise 3:02A		P Foundation worksheet 3:02A Simplifying algebraic fractions	Exercise 3:02	2A
FUN SPOT 3:02 TRY THIS MATHS-WORD PUZZLE Hidden in the maze of letters there are many words used in mathematics. Make a list of the words you find and, at the same time, put a line through the letters you use. Words may be written in any direction: up, down, backwards, $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	FUN SPOT 3:02TRY THIS MATHS-WORD PUZZLE \mathbf{k} <	e $\frac{x}{4} + \frac{y}{4}$ f $\frac{5a}{3} - \frac{2b}{3}$ i $\frac{3}{2} - \frac{2}{y}$ j $\frac{9}{m} - \frac{1}{m}$ m $\frac{5}{3n} + \frac{7}{3n}$ n $\frac{3}{2x} - \frac{1}{2x}$ 2 Reduce each of these expressions to its sim a $\frac{x}{3} + \frac{x}{5}$ b $\frac{a}{2} + \frac{a}{5}$ e $\frac{2a}{3} + \frac{a}{2}$ f $\frac{5x}{3} + \frac{2x}{4}$ i $\frac{x}{4} + \frac{y}{3}$ j $\frac{2a}{3} - \frac{3b}{2}$ m $\frac{2}{x} + \frac{4}{3x}$ n $\frac{1}{3a} + \frac{2}{4a}$	$g \frac{2}{a} + \frac{3}{a}$ $k \frac{5a}{x} + \frac{2a}{x}$ $o \frac{8a}{5b} + \frac{2a}{5b}$ $nplest form.$ $c \frac{y}{3} - \frac{y}{4}$ $g \frac{3n}{8} - \frac{n}{4}$ $k \frac{3m}{5} + \frac{n}{2}$ $o \frac{7}{2m} - \frac{2}{5m}$	$h \frac{7}{x} + \frac{1}{x}$ $l \frac{2x}{y} - \frac{3x}{y}$ $p \frac{7m}{4x} - \frac{3m}{4x}$ $d \frac{m}{2} - \frac{m}{4}$ $h \frac{4p}{5} - \frac{3p}{10}$ $l \frac{k}{6} - \frac{21}{4}$ $p \frac{5}{8x} - \frac{1}{2x}$	1 a $2a$ c $\frac{5a}{3}$ e $\frac{x+y}{4}$ g $\frac{5}{a}$ i $\frac{1}{y}$ k $\frac{7a}{x}$ m $\frac{4}{n}$ o $\frac{2a}{b}$	b $\frac{x}{5}$ d $\frac{3m}{5}$ f $\frac{5a-2b}{3}$ h $\frac{8}{x}$ j $\frac{8}{m}$ l $\frac{-x}{y}$ n $\frac{1}{x}$ p $\frac{m}{x}$, $7a$
	but you cannot change direction in order to form a word (i.e. the letters must be in a straight line). When you have found all the words there should be four letters that have not been used. These four letters can be arranged to form another 'mystery' maths word. $\begin{array}{cccccccccccccccccccccccccccccccccccc$	m $\frac{2}{x} + \frac{4}{3x}$ n $\frac{1}{3a} + \frac{2}{4a}$ q $\frac{2a}{3x} + \frac{3a}{2x}$ r $\frac{x}{3m} - \frac{2x}{m}$ FUN SPOT 3:02 TRY THIS NHidden in the maze of letters there are many mathematics. Make a list of the words you fin same time, put a line through the letters you may be written in any direction: up, down, bar	$ \begin{array}{c} 0 \frac{7}{2m} - \frac{2}{5m} \\ \mathbf{s} \frac{5m}{2n} + \frac{3m}{4n} \end{array} \\ \end{array} \\ \mathbf{MATHS-WORD PUZZLE} \\ \text{words used in} \\ \text{da and, at the} \\ \text{use. Words} \\ \text{ackwards,} \\ was then one option of the set of the se$	$p \frac{5}{8x} - \frac{1}{2x}$ $t \frac{2x}{3a} + \frac{y}{4a}$ $E T E M A I D C$ $E L C R I C G U$ $T C X R Y O H B$ $E I T R A N T E$	2 a $\frac{15}{15}$ c $\frac{y}{12}$ e $\frac{7a}{6}$ g $\frac{n}{8}$ i $\frac{3x+4y}{12}$	$b \frac{7a}{10}$ $d \frac{m}{4}$ $f \frac{13x}{6}$ $h \frac{p}{2}$

I.

Teaching strategies

Lowest common denominator (LCD)

Remind students that algebraic fractions cannot be added or subtracted if the denominator is not the same. Spend time demonstrating to students how to find common multiples.


One way to find the LCD is to look at tree diagrams and prime numbers. Design a tree diagram for finding the prime numbers in each denominator. Find the prime number that occurs the most in each denominator.

For example: LCD of $\frac{1}{8}$, $\frac{1}{4}$ and $\frac{1}{6}$ 2 appears the most in 8 (3 times) 3 appears the most in 6 (1 time). Multiply these numbers to give the LCD.

The mystery word is 'GRAM'.

Homework 3:02A

PREP ()UIZ 3:02E	3	
1 $\frac{3}{8}$ 5 2 9 3 <i>a</i>	2 $\frac{3}{10}$ 6 $\frac{8}{15}$ 10 2 <i>a</i>	3 $\frac{1}{6}$ 7 $30x$	4 $\frac{2}{3}$ 8 $6a^2$

Lesson starter

Prep quiz 3:02B

Have students complete Prep quiz 3:02B as a lesson starter.

Teaching strategies

1

 $\overline{2}$

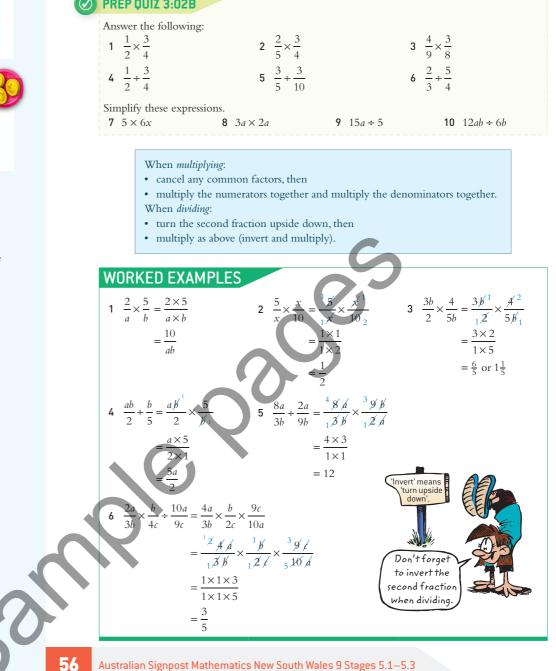
 \downarrow

 $\frac{1}{2}$

Copy, change and flip

Revise the copy, change and flip technique for division of fractions.

copy change flip


 $\downarrow \downarrow$

 \times

4

 $\frac{4}{3}$

Teacher's notes

Exercise 3:02B

1 Simplify these products. **b** $\frac{a}{4} \times \frac{b}{3}$

2 Simplify these divisions.

f $\frac{2}{x} \times \frac{1}{y}$

 $j \frac{2}{a} \times \frac{a}{4}$

n $\frac{b}{2} \div \frac{ab}{6}$

b $\frac{2}{p} \times \frac{p}{3}$

n $\frac{b}{c} \times \frac{c}{a} \times \frac{a}{b}$

e $\frac{xy}{z} \times \frac{2z}{x}$ f $\frac{ab}{c} \div \frac{a}{c}$ g $\frac{9m}{2} \times \frac{4m}{3}$

 $\mathbf{r} \quad \frac{6a}{15} \div \frac{3a}{10b} \times \frac{3}{4b}$

n $\frac{x}{y} \times \frac{y}{x}$ o $\frac{6m}{5a} \times \frac{15a}{2m}$

b $\frac{n}{3} \div \frac{n}{5}$ **c** $\frac{5n}{3} \div \frac{2n}{9}$

f $\frac{3}{2m} \div \frac{1}{3m}$ j $\frac{2p}{3q} \div \frac{8p}{9q}$ k $\frac{10k}{3n} \div \frac{2k}{9n}$

j $\frac{3}{a} \times \frac{2}{b}$ **k** $\frac{4ab}{x} \times \frac{x\gamma}{2ac}$

a $\frac{x}{2} \times \frac{\gamma}{3}$

e $\frac{3}{a} \times \frac{4}{m}$

i $\frac{p}{q} \times \frac{x}{\gamma}$

 $m \frac{ab}{3} \times \frac{2}{b}$

a $\frac{m}{2} \div \frac{m}{4}$

 $e \quad \frac{5}{a} \div \frac{2}{a}$

 $\mathbf{i} \quad \frac{a}{b} \div \frac{x}{\gamma}$

 $m \frac{x\gamma}{2} \div \frac{\gamma}{4}$

 $a \quad \frac{a}{3} \div \frac{12}{5a}$

i $\frac{4}{pq} \times \frac{p}{q}$

 $\mathbf{m} \ \frac{2}{x} \times \frac{x}{3} \times \frac{9}{4}$

q $\frac{2m}{3n} \times \frac{5n}{6p} \div \frac{8m}{9p}$

3 Simplify these expressions.

Ρ

d $\frac{a}{4} \times \frac{a}{10}$

h $\frac{1}{n} \times \frac{1}{3n}$

 $1 \frac{3x}{5} \times \frac{2}{9x}$

 $p \frac{8x}{5p} \times \frac{2a}{3x}$

d $\frac{x}{5} \div \frac{3x}{10}$

h $\frac{3x}{5\gamma} \div \frac{x}{10\gamma}$

 $l \frac{a}{2} \div \frac{a}{3}$

 $p \quad \frac{9a}{b} \div \frac{4a}{3b}$

d $3b \div \frac{6}{b}$

h $\frac{2x}{\gamma} \div \frac{x}{2\gamma}$

 $l \quad \frac{9bc}{2a} \div \frac{6b}{4a}$

 $\mathbf{p} \quad \frac{8}{a} \times \frac{2a}{15} \div \frac{8}{3}$

 $\frac{2a}{3b} \frac{2}{2b}$

Algebra is important in the design and construction of buildings.

 $\frac{3a}{2b} \div \frac{4a}{9b}$

57

3 Algebra

c $\frac{m}{2} \times \frac{m}{5}$

 $g \quad \frac{1}{p} \times \frac{4}{p}$ $k \quad \frac{m}{5} \times \frac{10}{n}$

 $\frac{xy}{c} \div \frac{y}{cx}$

c $\frac{15}{x} \div 5$

s $\frac{xy}{yz} \times \frac{xz}{ty} \times \frac{tz}{tx}$

Answers

Exercise 3:02B

1 a $\frac{xy}{6}$ b $\frac{ab}{12}$ c $\frac{m^2}{10}$ d $\frac{a^2}{40}$ $\frac{12}{am} \quad \mathbf{f} \quad \frac{2}{xy} \quad \mathbf{g} \quad \frac{4}{p^2} \quad \mathbf{h} \quad \frac{1}{3m}$ $\frac{px}{qy} \quad \mathbf{j} \quad \frac{1}{2} \quad \mathbf{k} \quad \frac{2m}{n} \quad \mathbf{l} \quad \frac{2}{15}$ $\frac{1}{3n^2}$ е $\frac{2a}{3}$ n 1 o 9 $\frac{16a}{15p}$ m р **2 a** 2 **b** $\frac{5}{3}$ c $\frac{15}{2}$ d $\frac{2}{3}$ e $\frac{5}{2}$ $f \frac{9}{2}$ **g** $\frac{1}{2}$ **h** 6 $\frac{a\gamma}{bx}$ j $\frac{3}{4}$ k 15 l $\frac{3}{2}$ m 2x n $\frac{3}{a}$ o x^2 **p** $\frac{27}{4}$ **3** a $\frac{5a^2}{36}$ b $\frac{2}{3}$ c $\frac{3}{x}$ d $\frac{b^2}{2}$ b g $6m^2$ **h** 4 6 ab k $\frac{2b\gamma}{c}$ l 3c**n** 1 **o** 6 $p = \frac{2}{5}$ s <u>xz</u> t <u>b</u> 5 **r** 1 q

Class activities

Building algebraic fractions

Divide the class into groups of four. Each group must build 10 algebraic fractions. The rules are simple.

The answer must:

- contain at least one pronumeral
- be in the form of a fraction
- simplify from the given expression.

Once each group has made their fractions, they are passed to other groups to simplify. [Understanding, Fluency]

Homework 3:02B

Teacher's notes

57 **3** Algebra

3:03 Content statements

Apply the distributive law to the expansion of algebraic expressions, including binomials, and collect like terms where appropriate (ACMNA213) [Stage 5.2]

- expand algebraic expressions, including those involving terms with indices and/or negative coefficients, eg $-3x^2(5x^2 + 2x^4y)$
- expand algebraic expressions by removing grouping symbols and collecting like terms where applicable, eg expand and simplify 2y(y-5) + 4(y-5), 4x(3x+2) (x-1)

Answers PREP QUIZ 3:03 1 10x 2 $3a^2$ 3 6x + 84 x + 2 5 $5y^2 + 4y$ 6 13 + 2a7 3x - 21 8 18 - 45y9 $2a^2 + 6a$ 10 -5x - 35Lesson starter Algebra tiles Have students complete the following tasks. 1 Make a number of algebra tiles as shown below.

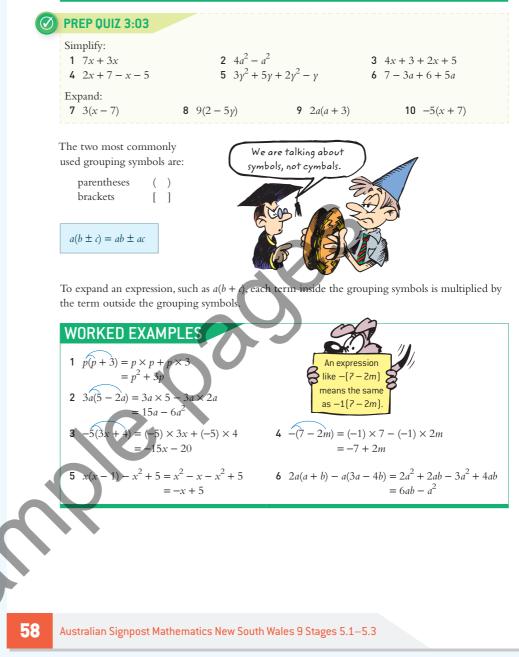
5 2 x

2 Work out the area of each algebra tile.

5

- **3** Using the algebra tiles, find ways to represent an area of:
 - **a** 5*x* + 10
 - **b** 10*x* + 10
 - **c** 5x + 20
 - **d** 5x 10

P Digital resources


eBook

- Foundation worksheet 3:03 Grouping symbols
- Challenge worksheet 3:03 Fractions and grouping symbols

ProductLink

• Grouping symbols (Drag-and-drop)

3:03 Simplifying expressions with grouping symbols

Teaching strategies

Distributive law

Remind students of the distributive law.

 $a(b+c) = a \times b + a \times c$

Use the distributive law to expand and simplify.

```
\begin{aligned} 3(3p+2q) &- 5(p-q) \\ &= 3 \times 3p + 3 \times 2q + -5 \times p + -5 \times -q \\ &= 9p + 6q - 5p + 5q \\ &= (9p - 5p) + (6q + 5q) \\ &= 4p + 11q \end{aligned}
```

Expanding grouping symbols

When expanding expressions that contain grouping symbols, follow these steps.

- Step 1 Write the expression.
- Step 2 Work from left to right to expand the grouping symbols.
- Step 3 Collect like terms.

The area of rectangle A = 3 × n = 3n The area of rectangle B = 3 × 4 = 12 The area of the combined rectangle = $3(n + 4)$ The area of the area of the following rectangles in two ways. The area of the area of the combined rectangle = $3(n + 4)$ The area of the area of						Answers	
The area of rectangle $A = 3 \times n = 3n$ The area of rectangle $A = 3 \times n = 3n$ The area of the combined rectangle $= 3(n + 4)$ The area of the combined rectangle $= 3(n + 4)$ The area of the combined rectangle $= 3(n + 4)$ Following the example above, write the area of each of the following rectangles in two ways. The area of the combined rectangle $= 3(n + 4)$ Following the example above, write the area of each of the following rectangles in two ways. The area of the combined rectangle $= 3(n + 4)$ Following the example above, write the area of each of the following rectangles in two ways. The area of the combined rectangle $= 3(n + 4)$ Following the example above, write the area of each of the following rectangles in two ways. The area of the combined rectangle $= 3(n + 4)$ The area of the combi	xercise 3:03			Challenge worksheet 3:03		Exercise 3:03	
$ \begin{array}{c} a & b & 7 & x & c & m & n \\ a & b & 7 & x & c & 1 \\ b & 1 & 1 & 1 & 1 \\ a & 1 & 1 & 1 \\ b & 2(x + 3) & b & 3(x + 5) & c & 5(x - 1) \\ a & 2(x + 3) & b & 3(x + 5) & c & 2(y - 1) \\ a & 3(x - 1) & n & 9x(2x + 7) & 0 & 8p(2 - 5p) \\ a & 7(3x + 2) & f & -5(2x - 1) \\ a & -2(x + 3) & b & -3(a + 5) & c & -2(y - 1) \\ a & -2(x + 3) & b & -3(a + 5) & c & -2(y - 1) \\ a & -2(x + 3) & b & -3(a + 5) & c & -2(y - 1) \\ a & -2(x + 3) & b & -3(a + 5) & c & -2(y - 1) \\ a & -2(x + 1) & 1 & -3(x + 7) & k & -(8 - 2p) \\ a & -2(x + 3) + 5a + 2 & b & 3(x + 5) + 7x - 8 \\ a & -2(x + 3) + 5a + 2 & b & 3(x + 5) + 7x - 8 \\ a & -2(x + 3) + 5a + 52 & b & 3(x + 5) + 7x - 8 \\ b & 10m + 7x + 10 & n & -y(5 - y) \\ b & 10m + 7x + 5(x - 1) & i & 7n - 4 + 3(n - 1) \\ c & 8y - 3 & d & 100 \\ c & 8y - 4 & 1 & 1 \\ c & 8x + 7 & 1 & 100 \\ c & 8y - 3 & d & 100 \\ c & 8$	The area of rectangle The area of the comb $\therefore 3(n + 4) = 3n + 12$	$B = 3 \times 4 = 12$ sined rectangle = 3(n -	+ 4)			c $7m + 7n, 7(m + n)$ e $6x + 6y, 6(x + y)$ 2 a $2x + 6$	d pa f ba b 3a
$ \begin{array}{c} d \\ a \\ q \\ q \\ p \\ p \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	a 5	b 7		m n		g $21x - 35y$ i $x^2 + 7x$	f 5: h 42 j a^2
Expand: a $2(x + 3)$ b $3(a + 5)$ c $5(x - 1)$ d $7(m - 3)$ e $2(3a + 2b)$ f $5(x + y)$ g $7(3x - 5y)$ h $6(7m - 8n)$ i $x(x + 7)$ j $a(a - 1)$ k $m(m + 10)$ l $n(n - 3)$ m $3a(2a - 1)$ n $9x(2x + 7)$ o $8p(2 - 5p)$ p $7q(3 + 2q)$ q $x(a + b)$ r $y(2y + x)$ s $2m(m + n)$ t $5a(2a + 3b)$ Expand by removing the parentheses. a $-2(x + 3)$ b $-3(a + 5)$ c $-2(y - 1)$ d $-5(p - 3)$ e $-7(3a + 2)$ f $-5(2x - 1)$ g $-7(3 + 2m)$ h $-4(7 - x)$ i $-(a + 1)$ j $-(3x + 7)$ k $-(8 - 2p)$ l $-(3a + 2b)$ m $-x(x + 10)$ n $-y(5 - y)$ o $-3x(2x + 7)$ p $-10n(8m - n)$ Simplify: a $2(a + 3) + 5a + 2$ b $3(x + 5) + 7x - 8$ c $5(y - 2) + 3y + 7$ d $4(a - 1) + 6a - 5$ e $3(p + 2) - 2p + 4$ f $10(m + 3) - 11m - 15$ m $a + 8$ n $5a^{-2}$ g $5a + 6 + 2(a + 7)$ h $2x + 7 + 5(x - 1)$ i $7n - 4 + 3(n - 1)$ m $a + 8$ n $5a^{-2}$ g $5a + 6 + 2(a + 7)$ h $2x + 7 + 5(x - 1)$ i $7n - 4 + 3(n - 1)$ m $a + 8$ n $5a^{-2}$ g $20 - 4(x - 2) + 5x$ q $5x + 7 + 2(2x + 7)$ r $4(3a + 1) - 40a + 2$ s $10m + 6 - 3(2m - 1)$ t $8x - 3(1 - 2x) + 10$	8	x	f			m $6a^2 - 3a$ o $16p - 40p^2$ q $ax + bx$	n 18 p 23 r 23
q $x(a + b)$ r $y(2y + x)$ s $2m(m + n)$ t $5a(2a + 3b)$ k $-8 + 2p$ t -4 Expand by removing the parentheses.a $-2(x + 3)$ b $-3(a + 5)$ c $-2(y - 1)$ d $-5(p - 3)$ m $-x^2 - 10x$ n -4 a $-2(x + 3)$ b $-3(a + 5)$ c $-2(y - 1)$ d $-5(p - 3)$ h $-4(7 - x)$ i $-(a + 1)$ j $-(3x + 7)$ k $-(8 - 2p)$ t $-(3a + 2b)$ i $-6x^2 - 21x$ p $-4a$ m $-x(x + 10)$ n $-y(5 - y)$ o $-3x(2x + 7)$ p $-10n(8m - n)$ i $0 -6x^2 - 21x$ p $-4a$ Simplify:a $2(a + 3) + 5a + 2$ b $3(x + 5) + 7x - 8$ c $5(y - 2) + 3y + 7$ i $10n - 7$ j 112 a $2(a + 3) + 5a + 2$ b $3(x + 5) + 7x - 8$ c $5(y - 2) + 3y + 7$ i $10n - 7$ j 112 g $5a + 6 + 2(a + 7)$ h $2x + 7 + 5(x - 1)$ i $7n - 4 + 3(n - 1)$ m $a + 8$ n $5m$ j $4h - 1 + 7(h + 2)$ k $6x + 2(x + 1) + 5$ l $4y + 6(y + 2) - 10$ m $a + 8$ n $5m$ m $3a + 10 - 2(a + 1)$ n $10m + 4 - 5(m + 4)$ o $6 - 2(y - 4) + 4y$ q $9x + 21$ r $2a$ s $10m + 6 - 3(2m - 1)$ t $8x - 3(1 - 2x) + 10$ 5 a $5x + 8$ b $8y$ Simplify each expression by expanding the grouping symbols and then collecting like terms.c $7a - 3$ d 12	Expand: a $2(x + 3)$ e $2(3a + 2b)$ i $x(x + 7)$ m $2 \cdot (2x - 1)$	b $3(a+5)$ f $5(x+y)$ j $a(a-1)$	g $7(3x - 5\gamma)$ k $m(m + 10)$	d $7(m-3)$ h $6(7m-8n)$ l $n(n-3)$		3 a $-2x - 6$ c $-2y + 2$ e $-21a - 14$	b — d — f —
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	q $x(a + b)$ Expand by removing a $-2(x + 3)$	r $y(2y + x)$ the parentheses. b $-3(a + 5)$	s $2m(m+n)$ c $-2(y-1)$	t $5a(2a + 3b)$ d $-5(p - 3)$		k $-8 + 2p$ m $-x^2 - 10x$ o $-6x^2 - 21x$	l — n — p —
d = 4(a - 1) + 6a - 5 $e = 3(p + 2) - 2p + 4$ $f = 10(m + 3) - 11m - 15$ $k = 8x + 7$ $l = 10m - 10m - 10m - 15$ $g = 5a + 6 + 2(a + 7)$ $h = 2x + 7 + 5(x - 1)$ $i = 7n - 4 + 3(n - 1)$ $m = a + 8$ $n = 5m - 5m - 16m -$	i $-(a + 1)$ m $-x(x + 10)$ Simplify:	j $-(3x + 7)$ n $-y(5 - y)$	k $-(8-2p)$ o $-3x(2x+7)$	l -(3a + 2b) p -10n(8m - n)	Q	c $8y - 3$ e $p + 10$ g $7a + 20$	d 10 f 13 h 7:
s $10m + 6 - 3(2m - 1)$ t $8x - 3(1 - 2x) + 10$ Simplify each expression by expanding the grouping symbols and then collecting like terms. 5 a $5x + 8$ b $8y$ c $7a - 3$ d 12	d $4(a-1) + 6a - 5$ g $5a + 6 + 2(a + 7)$ j $4h - 1 + 7(h + 2)$	e $3(p+2)$ h $2x + 7 +$ k $6x + 2(x)$	-2p + 4 f -5(x - 1) i x + 1) + 5 l	10(m + 3) - 11m - 15 7n - 4 + 3(n - 1) 4y + 6(y + 2) - 10		k $8x + 7$ m $a + 8$ o $2y + 14$	l 1(n 5) p x
	s 10 <i>m</i> + 6 - 3(2 <i>m</i> -	1) t $8x - 3(1)$ ion by expanding the	(-2x) + 10 grouping symbols and	hen collecting like terms.		5 a 5 <i>x</i> + 8 c 7 <i>a</i> - 3	b 83 d 13

Class activities

Find my number bingo

Students will need: a 3×3 grid in which to write the following nine numbers in any order:

-20, 13, -39, 4, -14, -57, 6, 12, -15

Each question is shown to students one at a time within a short interval.

Students find the missing number and then cross that number off their bingo sheet. The winner is the first to cross off three numbers in a row, column or diagonal.

1
$$x(6x^2 + 7) = \Box x^3 + 7x$$

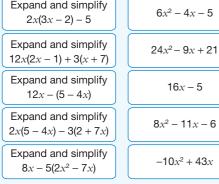
2 $2x(5x^2 + 6) = 10x^3 + \Box x$

3 $-5x(3x-7) = \Box x^2 + 35x$ 4 $2(x + 4) + 4(x - 7) = 6x + \square$ **5** $7(x+4) + 3(2x-5) = \Box x + 13$ **6** $5(3x + 1) + 4(3x - 11) = 27x + \square$ **7** $5(5x-4) - 4(3x-6) = 13x + \square$ 8 $2(11 - 15x) - 9(3x + 4) = \Box x - \Box$ Answers: **1** 6 **2** 12 **3** −15 **4** –20 **6** –39 8 -57, 14 **5** 13 **7** 4 [Understanding, Fluency]

2	0130 3.03		
I	5a + 35, 5(a + 7)	b	21 + 3x, 3(7 + x)
	7m + 7n, 7(m + n)	d	pq + 8p, p(q + 8)
1	$6x + 6\gamma, 6(x + \gamma)$	f	bc + ac, c(b + a)
1	2x + 6	b	3a + 15
	5x - 5	d	7m - 21
	6a + 4b	f	5x + 5y
	21x - 35y	h	42m - 48n
	$x^2 + 7x$	j	$a^2 - a$
	$m^2 + 10m$	i	$n^2 - 3n$
n		n	$18x^2 + 63x$
	$16p - 40p^2$	р	$21q + 14q^2$
	ax + bx	r	$2y^2 + xy$
	$2m^2 + 2mn$	t	$10a^2 + 15ab$
	-2x - 6	b	-3a - 15
	-2y + 2	d	-5p + 15
	-21a - 14	f	-10x + 5
	-21 - 14m	h	-28 + 4x
	-a - 1	j	-3x - 7
	-8 + 2p	i	-3a-2b
n	$-x^2 - 10x$	n	$-5\gamma + \gamma^2$
	$-6x^2 - 21x$	р	$-80mn + 10n^2$
	7a + 8	b	10x + 7
	$8\gamma - 3$	d	10a - 9
1	p + 10	f	15 – <i>m</i>
	7a + 20	h	7x + 2
	10 <i>n</i> – 7	j	11h + 13
	8x + 7	ί	10y + 2
n	a + 8	n	5m - 16
1	$2\gamma + 14$	р	x + 28
	9x + 21	r	2a + 6
	4 <i>m</i> + 9	t	14x + 7
1	5x + 8	b	
	7a – 3	d	13 <i>m</i> – 14
	17x - 12	f	10x + 40
	2x + 23	h	3 <i>m</i>
	2a + 66	j	2n - 46
	$x^2 + 6x + 3$		$a^2 + 10a - 21$
n	$m^2 - m - 12$	n	$t^2 - 9t + 20$
1	$3a^2 + 3ab$	р	$x^2 + 2xy + y^2$
n	nework 3:	03	}
BRA	3 Student name	Expand and simple a 1(x+2)+1	rado of their repression. Expand all grouping qualitat, then simplify rad-repression.
ing e		 b is + 2(x + 3) 	$a = b + c_{permin}$. a = b + (b + 2). b = a - (b + 2).
y syn	xpressions with boos k (0 - 2) 4 (2 + 2)	s (m - 2(x + 1)	a = 4a + 2 - 3(a + 2) a = 4a + 2 - 3(a + 2)

Answers

.



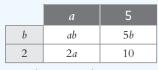
Class activities

Expand and simplify matching pairs

Make a set of cards as shown below, and ask students to match the question with the answer.

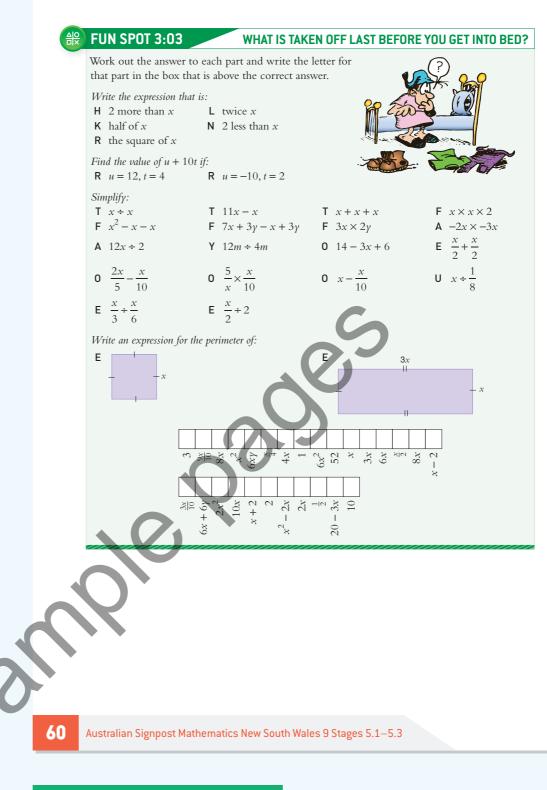
Expand and simplify $2x(3\gamma - 2) - 5$	$8x^2 - 11x - 6$
$24x^2 - 9x + 21$	Expand and simplify $12x - (5 - 4x)$
Expand and simplify $2x(5-4x) - 3(2+7x)$	Expand and simplify $12x(2x-1) + 3(x+7)$
Expand and simplify $8x - 5(2x^2 - 7x)$	$-10x^2 + 43x$
16 <i>x</i> – 5	6xy - 4x - 5
Answers:	
Expand and simplify	

Extension


Extension expansions

Show how you could use an area model to expand each of the following expressions.

1 (a+5)(b+2)

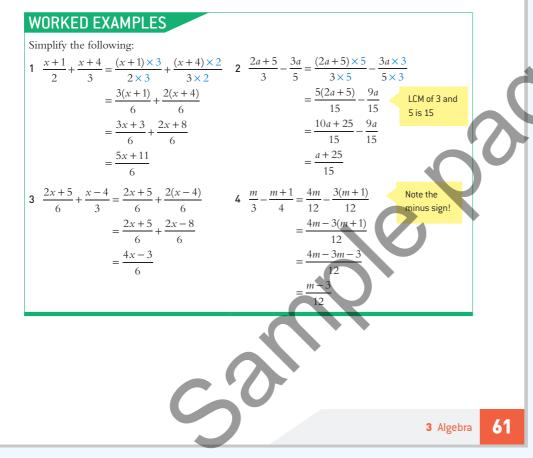

- **2** (a+5)(b-2)
- **3** $(3x + 5\gamma)(2x + 7\gamma)$
- 4 $(6\gamma 7z)(2\gamma 3z)$

Answers:

- **1** ab + 2a + 5b + 10
- **2** ab 2a + 5b 10
- **3** $6x^2 + 31xy + 35y^2$
- 4 $12y^2 32yz + 21z^2$

```
[Understanding, Fluency]
```


Answers


FUN SPOT 3:03

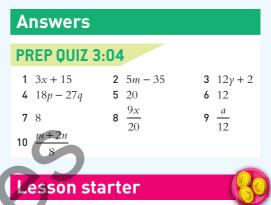
YOUR FEET ARE TAKEN OFF THE FLOOR

3:04 Further algebraic fractions

Ø	PREP QUIZ 3:04			
	Expand: $1 \ 3(x+5)$	2 5(<i>m</i> - 7)	3 2(6 <i>y</i> + 1)	4 $9(2p - 3q)$
	Find the lowest common 5 4 and 5	n multiple (LCM) of: 6 4 and 6		7 4 and 8
	Simplify: 8 $\frac{x}{4} + \frac{x}{5}$	9 $\frac{a}{4} - \frac{a}{6}$		10 $\frac{m}{8} + \frac{n}{4}$

In Section 3:02A all of the fractions had a single term in the numerator. If there is more than one term in the numerator we use the skills met in the last section for expanding grouping symbols.

Teacher's notes

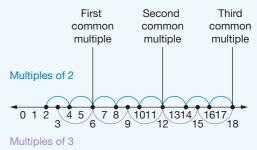


3:04 Content statements

Add and subtract algebraic fractions with numerical denominators, including those with binomial numerators (NSW) [Stage $5.3^{\$}$]

• add and subtract algebraic fractions, including those with binomial numerators,

eg
$$\frac{2x+5}{6} + \frac{x-4}{3}, \frac{x}{3} - \frac{x+1}{5}$$


Prep quiz 3:04

Have students complete Prep quiz 3:04 as a lesson starter.

Teaching strategies

Finding LCM

Have students develop a number line as a technique to find the LCM for algebraic fractions.

Common mistakes

Ask students to find the common mistake in the following solution.

$$\frac{2x+5}{3} - \frac{4x-3}{4} = \frac{8x+5}{12} - \frac{12x-3}{12} = \frac{-4x+2}{12}$$

Discuss with students the following points:

- You must use the distributive law correctly and multiply each term in the numerator by the factor required to give the LCD.
- Make sure you correctly multiply the expression by the negative number.

Exercise 3:04

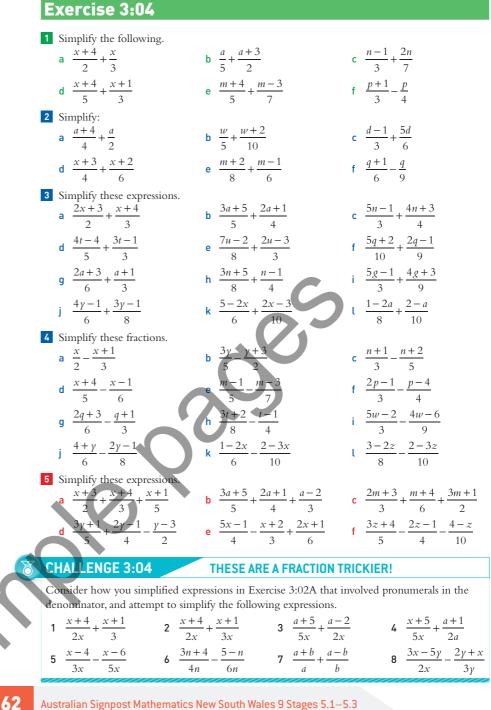
1	а	$\frac{5x+12}{6}$	b	$\frac{7a+15}{10}$	с	$\frac{13n-7}{21}$
	d	$\frac{8x+17}{15}$	e	$\frac{12m+13}{35}$	f	$\frac{p+4}{12}$
2	а	$\frac{3a+4}{4}$	b	$\frac{3w+2}{10}$	с	$\frac{7d-2}{6}$
	d	$\frac{5x+13}{12}$	е	$\frac{7m+2}{24}$	f	$\frac{q+3}{18}$
3	а	$\frac{8x+17}{6}$	b	$\frac{22a+25}{20}$	с	$\frac{32n+5}{12}$
	d	$\frac{27t - 17}{15}$	е	$\frac{37u-30}{24}$	f	$\frac{65q+8}{90}$
	g	$\frac{4a+5}{6}$	h	$\frac{5n+3}{8}$	i	<u>19g</u> 9
	j	$\frac{25\gamma-7}{24}$	k	$\frac{8-2x}{15}$	ι	$\frac{13-14a}{40}$
4	а	$\frac{x-2}{6}$	b	$\frac{\gamma - 15}{10}$	с	$\frac{2n-1}{15}$
	d	$\frac{x+29}{30}$	е	$\frac{2m+8}{35}$	f	$\frac{5p+8}{12}$
	g	$\frac{1}{6}$	h	$\frac{t+4}{8}$	i	$\frac{11w}{9}$
	j	$\frac{19-2\gamma}{24}$	k	$\frac{-1-x}{30}$	ι	$\frac{7+2z}{40}$
5	а	$\frac{31x+91}{30}$	b	$\frac{86a + 35}{60}$	с	$\frac{14m+13}{6}$
	d	$\frac{12\gamma + 29}{20}$	e	$\frac{5x-3}{4}$	f	$\frac{4z+13}{20}$

Extension

Extra challenge

Simplify these expressions.

 $\frac{2x+3}{x-4} + \frac{x+7}{x-4}$ $2 \quad \frac{3x-5}{x+1} - \frac{2x+4}{x+1}$ $\frac{x-1}{x-3} - \frac{x-2}{3-x}$ $\frac{x-1}{2x-5} + \frac{3-x}{5-2x}$


Answers:

1
$$\frac{3x+10}{x-4}$$

$$2 \frac{x-9}{x+1}$$

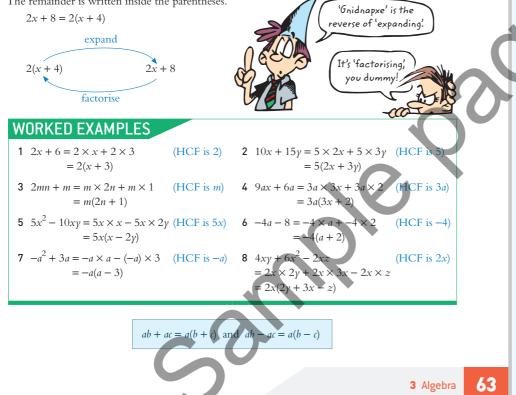
$$x-3$$

 $4 \quad \frac{2x-4}{2x-5}$

Australian Signpost Mathematics New South Wales 9 Stages 5.1–5.3

Answers			Hor
CHALLENGE 3	:04		3 ALGEB
1 $\frac{2x^2 + 5x + 12}{6x}$	2	$\frac{5x+14}{6x}$	When shares and the second
3 $\frac{7a}{10x}$	4	$\frac{10a + 7ax + 5x}{10ax}$	20-11 - 12
5 $\frac{2x-2}{15x}$	6	$\frac{7n+2}{12n}$	Radial for equations $\left\ \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right\ $ $\left\ \frac{2\pi - 1}{2} + \frac{\pi + 1}{2} + \frac{\pi + 1}{2} \right\ $ $\left\ \frac{\pi - 1}{2} + \frac{\pi + 1}{2} + $
$7 \frac{a^2 + b^2}{ab}$	8	$\frac{5xy - 2x^2 - 15y^2}{6xy}$	

mework 3:04



3:05 Factorising using common factors

Expand: 1 $2(x + 5)$ 3 $3a(2a + 7)$	2 $x(4x-1)$ 4 $2m(m+3n)$	n)	A factor of a given number is a number that divides into the giver number with no remainder.
Write the factors	s of:		e.g. {1, 2, 3, 6, 9, 18} is the set of
5 12	6 20	7 30	factors of 18.

To factorise an algebraic expression we must determine the highest common factor (HCF) of the terms and insert grouping symbols, usually parentheses.

If we expand the expression 2(x + 4), we obtain 2x + 8. To factorise 2x + 8 we simply reverse this procedure. The highest common factor of 2x and 8 is 2, so 2 is written outside the parentheses. The remainder is written inside the parentheses.

Teaching strategies

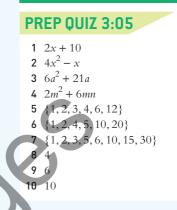
My factorising steps

When factorising, check for numerical common factors and algebraic common factors.

- Step 1 Find the common factors.
- Step 2 Find the highest common factors (HCF).
- Step 3 Factorise ab + ac = a(b + c).
- Step 4 Check your factorisation by multiplying the factors and comparing the answer with the original expression.

Negative common factors

When we have common negative factors, the common factor -1 is used to factorise the expression in addition to the HCF. For example, when factorising -9a - 12, the common factors of -9 and -12 are -3, 3, -1 and 1.


The HCF of 3 and common factor of -1 are used to factorise the expression. -9a - 12 = -3(3a + 4)

3:05 Content statements

Factorise algebraic expressions by taking out a common algebraic factor (ACMNA230) [Stage 5.2]

• factorise algebraic expressions, including those involving indices, by determining common factors, eg factorise $3x^2 - 6x$, $14ab + 12a^2$, $21xy - 3x + 9x^2$, $15p^2q^3 - 12pq^4$

Answers

Lesson starter

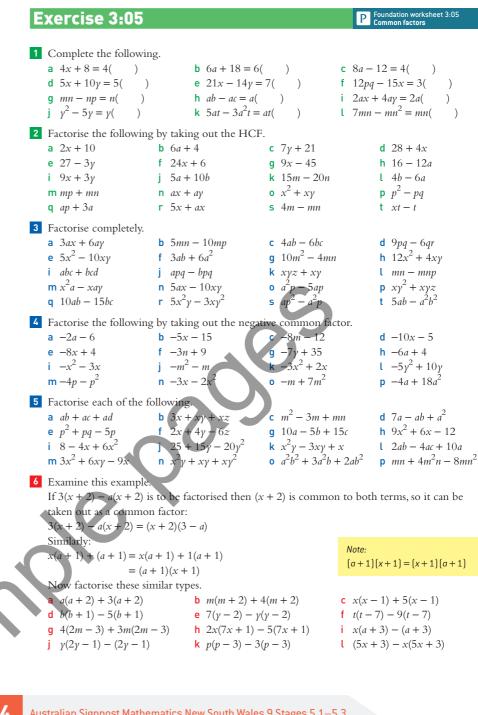
Find my common factor

Ask students to find common factors of various numbers and pronumerals.

- **1** List all of the factors of 20.
- 2 List all of the factors of 50.
- **3** What factors are common to 20 and 50?
- 4 What is the highest common factor of 20 and 50?
- 5 What factors are common to $30x^2$ and $40x^3$?
- 6 What are the highest common factors of $30x^2$ and $40x^3$?

Homework 3:05

P Digital resources


eBook

• Foundation worksheet 3:05 Common factors

Remember: a(b + c) = ab + ac

Exercise 3:05

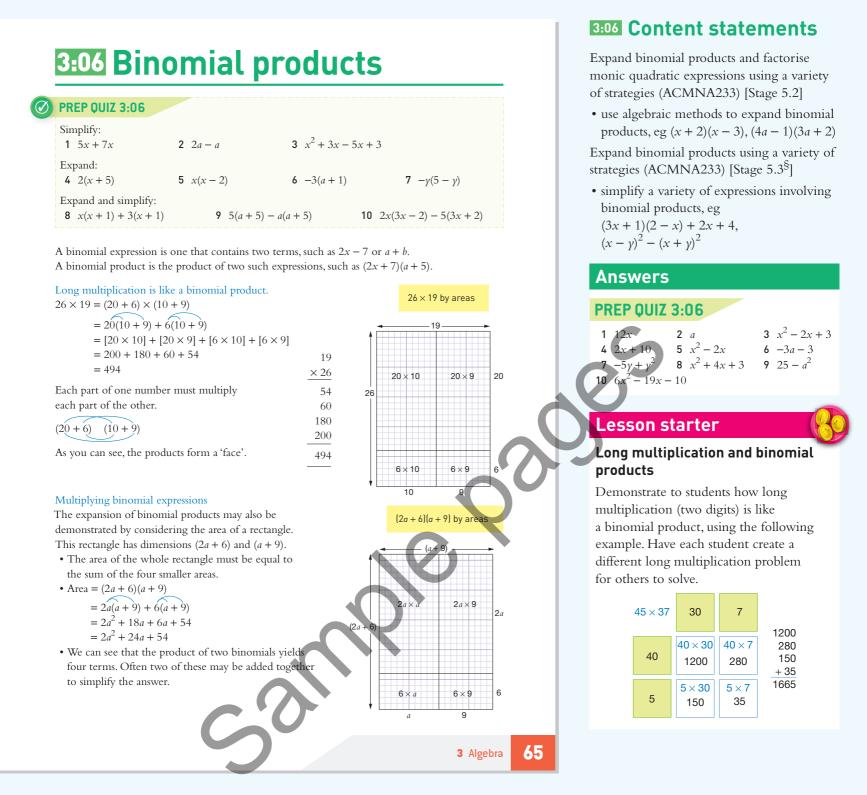
1	а	4(x + 2)	b	6(a + 3)	с	4(2a - 3)	
	d	$5(x+2\gamma)$	е	7(3x-2y)	f	3(4pq - 5x)	
	g	n(m-p)	h	a(b-c)	i	$2a(x+2\gamma)$	
	j	$\gamma(\gamma-5)$		at(5 - 3a)	ι	mn(7 - n)	
2	а	2(x+5)	b	2(3a + 2)	с	7(y + 3)	
	d	4(7 + x)	е	$3(9 - \gamma)$	f	6(4x + 1)	
	g	9(x - 5)	h	4(4 - 3a)	i	$3(3x + \gamma)$	
	j	5(a + 2b)	k	5(3m - 4n)	ι	2(2b - 3a)	
	m	m(p+n)	n	$a(x + \gamma)$	0	$x(x + \gamma)$	
	р	p(p-q)	q	a(p + 3)	r	x(5 + a)	
	s	m(4 - n)	t	t(x - 1)			
3	а	$3a(x+2\gamma)$	b	5m(n-2p)	с	2b(2a - 3c)	
	d	3q(3p-2r)	е	$5x(x-2\gamma)$	f	3a(b+2a)	
	g	2m(5m-2n)	h	$4x(3x + \gamma)$			
	j	pq(a-b)	k	xy(z+1)		mn(1-p)	
	m	$xa(x - \gamma)$	n	$5x(a-2\gamma)$	0	ap(a - 5)	
	р	$x\gamma(\gamma + z)$	q	5b(2a - 3c)	r	$x\gamma(5x-3\gamma)$	
	s	1 1 /		ab(5 - ab)			
4	а	-2(a + 3)		-5(x+3)			
	d			-4(2x - 1)			
	g	-7(y-5)	h	-2(3a - 2)	i	-x(x + 3)	
	j	-m(m + 1)	k				
		-p(4 + p)	n	-x(3+2x)	0	-m(1 - 7m)	
_		-2a(2-9a)					
5	а			b $x(3 +$	*	,	
	с	m(m-3+n)		d a(7 –		/	
	е	p(p + q - 5)		f $2(x + 2)$			
	g	5(2a - b + 3c				2x - 4	
	i	2(4-2x+3)		•	-	-	
	k	x(xy - 3y + 2)		l 2a(b -		/	
		3x(x+2y-3)		n $xy(x - x)$		17	
,	0	ab(ab + 3a + 3a + 3a)		• •		m - 8n)	
6	a	· · · · ·		b $(m + 2)$,	
	c	(x-1)(x+5)(y-2)(7-y)		d $(b+1)$ f $(t-7)$			
	e	(y-2)(7-y)(2m-3)(4+				$(-9)^{-9}$ $(2x - 5)^{-9}$	
	g i	(2m-3)(4+)(a+3)(x-1)		j (2y - j) (2y - j)			
	ı k	(a+3)(x-1)(p-3)(p-3)		$\int (2y) = 1$ l (5x +		. ,	
	n	$\psi = J_{j}\psi = J_{j}$	/	i (3 <i>x</i> +	5)(1 1)	

Class activities

Australian Signpost Mathematics New South Wales 9 Stages 5.1–5.3

My observations

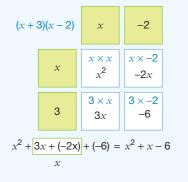
64


Complete the following table.

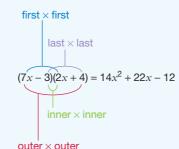
Expanded form	My observation		Factorised expression
16 - 8 <i>y</i>	Common factors: 1, 2, 4, 8	HCF is 8	$8(2 - \gamma)$
14 <i>y</i> - 49			
$15xy - 3x^2y^2$			
$8a^2 + 12a$			
$-12x^2 - 24x$			
d(2d - 3) + 3(2d - 3)			

Α	ns	w	рr	ς.

Expanded form	My observation	Factorised expression
16 - 8 <i>y</i>	Common factors: 1, 2, 4, 8 HCF is 8	$8(2 - \gamma)$
14 <i>y</i> – 49	Common factors: 1, 7 HCF is 7	$7(2\gamma - 7)$
$15x^2y - 3x^2y^2$	Common factors: 1, 3, x^2 , y HCF is $3x^2y$	$3x^2\gamma(5-\gamma)$
$8a^2 + 12a$	Common factors: 1, 2, 4, <i>a</i> HCF is 4 <i>a</i>	4a(2a-3)
$-12x^2 - 24x$	Common factors: 1, –1, 2, 4, 6, 12, <i>x</i> HCF is –12 <i>x</i> .	-12x(x+2)
d(2d-3) + 3(2d-3)	Common factor: $(2d - 3)$ HCF is $(2d - 3)$	(2d-3)(d+3)


[Fluency]

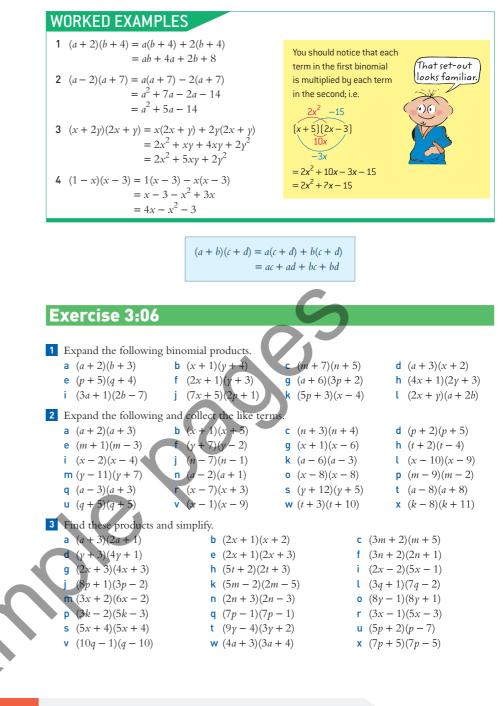
Teaching strategies


Using tables for binomial expressions

Demonstrate to students how to use a table format to expand binomial expressions.

FOIL (First, Outer, Inner, Last)

Introduce the concept of FOIL using the following example. Students can use this technique to ensure all factors are multiplied.


P Digital resources

ProductLink

Binomial products (Drag-and-drop)

Homework 3:06

66 Australian Signpost Mathematics New South Wales 9 Stages 5.1–5.3

Teacher's notes 7n + 2 +19t + 6 -13p - 2 +q - 2 9 -19k + 6 -14x + 3 +6y - 8 -101q + 10-25

Answers

Ex	er	cise 3:06		
1	а	ab + 3a + 2b + 6		
	b	xy + 4x + y + 4		
	с	mn + 5m + 7n + 3	5	
	d	ax + 2a + 3x + 6		
	е	pq + 4p + 5q + 20		
	f	$2x\gamma + 6x + \gamma + 3$		
	g	3ap + 2a + 18p + 3ap		
	h	8xy + 12x + 2y + 3		
	i	6ab - 21a + 2b - 7		
	j	14px + 7x + 10p + 5		
	k	5px - 20p + 3x -		
	ι	2ax + 4bx + ay + 2b	•	2
2	а	$a^2 + 5a + 6$	b	$x^{2} + 6x$
	С	$n^2 + 7n + 12$	d	$p_{2}^{2} + 7_{1}$
	е	$m^2 - 2m - 3$	f	$y^2 + 5y^2$
	g	$x^2 - 5x - 6$	h	$t^2 - 2t$
	i	$x^2 - 6x + 8$	j	$n^2 - 8n^2$
	k	$a^2 - 9a + 18$	ι	$x^2 - 19$
	m	$y^2 - 4y - 77$	n	$a^2 - a$
	0	$x^2 - 16x + 64$	р	$m^2 - 1$
	q	$a^2 - 9$	r	$x^2 - 4$
	s	$y^2 + 17y + 60$	t	$a^2 - 6^2$
	u	$q^2 + 10q + 25$	v	$x^2 - 10$
~	w	$t^2 + 13t + 30$	x	$k^{2} + 3k^{2}$ $2x^{2} + 5k^{2}$
3	а	$2a^2 + 7a + 3$ $3m^2 + 17m + 10$	b	$2x^{-} + 3$ $4y^{2} + 1$
	c e	$3m^{-} + 1/m + 10$ $4x^{2} + 8x + 3$	d f	$4y^{-} + 1$ $6n^{2} + 2$
	•	4x + 8x + 3 $8x^2 + 18x + 9$	r h	$6n + 10t^2 +$
	g i	8x + 18x + 9 $10x^2 - 12x + 2$		$10t + 24p^2 -$
	ı k	10x - 12x + 2 $10m^2 - 29m + 10$	j l	$24p - 21q^2 +$
	к m	10m - 29m + 10 $18x^2 + 6x - 4$	ו n	$4n^2 - 9$
	m o	$64u^2 - 1$	n p	4n - 2 $15k^2 - 2$
	q	$64\gamma^2 - 1$ $49p^2 - 14p + 1$	р r	$15k - 15x^2 $
	ч s	43p - 14p + 1 $25x^2 + 40x + 16$	t	$13x - 27y^2 +$
	s u	$5p^2 - 33p - 14$	v	$277 + 10q^2 -$
	u W	$3p^2 - 33p - 14^2$ $12a^2 + 25a + 12$	x	$49p^2 -$
		120 1 200 1 12	~	• ⁷ P

- **a** (3+x)(4+x)
- **d** (3-n)(3+n)
- **g** (9+k)(k+10)
- j (x + y)(x + 2y)

 $\mathbf{m} (2p-q)(2p+q)$

- **p** (9w 5x)(9w 5x)
- **b** (5-a)(2-a) **e** $(4+\gamma)(\gamma+5)$ **h** (2a+1)(3+a) **k** (2n+m)(n+2m)**n** $(3x+\gamma)(2x-5\gamma)$
- c (7 + m)(1 m)f (x - 7)(5 - x)i (3n + 1)(7 - 2n)l (a - b)(2a + 3b)
- **o** (3a+2b)(2a+3b)

3:07 Special products

3:07A Perfect squares

 PREP QUIZ 3:07A

 Simplify:

 1
 4²
 2
 7²
 3
 $(-2)^2$ 4
 $(-10)^2$ 5
 $(3x)^2$

 Complete:
 6
 $(x + 7)(x + 7) = x^2 + 14x + \dots$ 7
 $(a - 3)(a - 3) = a^2 - 6a + \dots$ 8
 $(2m - 1)(2m - 1) = \dots m^2 - 4m + 1$ 9
 $(n + 5)(n + 5) = n^2 + \dots n + 25$

 10
 $(x - 3)(x - 3) = x^2 - \dots x + 9$ 9
 $(n + 5)(n + 5) = n^2 + \dots n + 25$

When a binomial is multiplied by itself, we call this product a perfect square. If a perfect square is expanded, we get:

 $(x + y)^{2} = (x + y)(x + y)$ = x(x + y) + y(x + y)= $x^{2} + xy + yx + y^{2}$ = $x^{2} + 2xy + y^{2}$

Similarly: $(x - y)^2 = x^2 - 2xy + y^2$

The square of a binomial is equal to the square of the first term, plus twice the **product** of the two terms, plus the square of the second term.

Teacher's notes

Answers

Exercise 3:06

4	а	$12 + 7x + x^2$	b	$10 - 7a + a^2$
	с	$7 - 6m - m^2$	d	$9 - n^2$
	е	$y^2 + 9y + 20$	f	$12x - x^2 - 35$
	g	$k^2 + 19k + 90$	h	$2a^2 + 7a + 3$
		$19n - 6n^2 + 7$		
	k	$2n^2 + 5mn + 2m^2$	ι	$2a^2 + ab - 3b^2$
	m	$4p^2 - q^2$	n	$6x^2 - 13xy - 5y^2$
	0	$6a^2 + 13ab + 6b^2$	р	$81w^2 - 90wx + 25x^2$

3:07 Content statements

Expand binomial products using a variety of strategies (ACMNA233) [Stage 5.3[§]]

• recognise and apply the special products, $(a + b)^2 = a^2 + 2ab + b^2$ $(a - b)^2 = a^2 - 2ab + b^2$

• use algebraic methods to expand a variety of binomial products, including the special products, eg $(2\gamma + 1)^2$, (3a - 1)(3a + 1)

simplify a variety of expressions involving binomial products, eg

(3x + 1)(2 - x) + 2x + 4,(x - y)² - (x + y)²

Answers

PREP QUIZ 3:07A

1	16	2	49	3 4	4	100
5	$9x^2$	6	49	7 9	8	4
9	10	10	6			

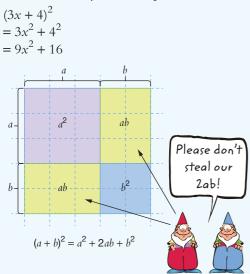
Lesson starter

Using FOIL for perfect squares

Using the FOIL method (see the Teaching strategy on page 65), have students try to expand a number of perfect squares from Exercise 3:07A Question 1.

P Digital resources

ProductLink
• Special products (Drag-and-drop)


Teaching strategies

Perfect square rule

Many students will continue to expand perfect squares using FOIL. Students need to practise and be encouraged to use the perfect square rule.

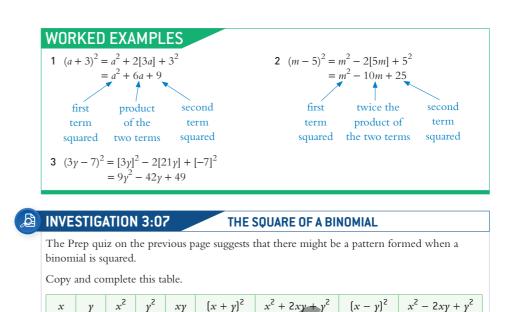
Misconception: $(3x + 4)^2 = 3x^2 + 16$

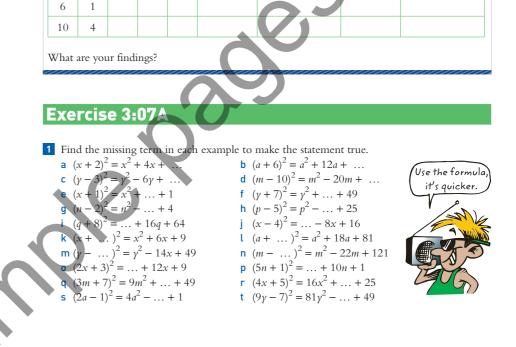
Point out to students the common error when expanding perfect squares. Explain to the students why this example is incorrect.

Therefore:

(3x + 4)²= (3x + 4)(3x + 4) = 9x² + 12x + 12x + 16 = 9x² + 24x + 16

Investigation 3:07


- Remind students that $6^2 = 36$. A common error is that students calculate $6^2 = 12$.
- Remind students that $(x + y)^2 = x^2 + 2xy + y^2$. A common error is that students expand


```
(x + y)^2 = x^2 + y^2.
```

Answers

Exercise 3:07A

1 ;	а	4	b	36	с	9	d	100
	е	2x	f	14y	g	4 <i>n</i>	h	10p
i	i	q^2	j	x^2	k	3	ι	9
I	m	7	n	11	0	$4x^2$	р	$25n^2$
	q	42 <i>m</i>	r	40 <i>x</i>	s	4 <i>a</i>	t	126y

68 Australian Signpost Mathematics New South Wales 9 Stages 5.1–5.3

Answers
INVESTIGATION 3:07

5

3

x	Ŷ	<i>x</i> ²	γ ²	хү	$[x+\gamma]^2$	$x^2 + 2xy + y^2$	$[x-\gamma]^2$	$x^2 - 2xy + y^2$
5	3	25	9	15	64	64	4	4
6	1	36	1	6	49	49	25	25
10	4	100	16	40	196	196	36	36

2 Expand these perfect	squares and simplify.	
a $(x+3)^2$	b $(x+5)^2$	c $(x+1)^2$
d $(x-6)^2$	e $(m-1)^2$	f $(n-5)^2$
g $(x+2)^2$	h $(n-8)^2$	i $(m+11)^2$
j $(a+12)^2$	k $(x + 10)^2$	$(p-9)^2$
$m(x+\gamma)^2$	n $(a+m)^2$	o $(x+t)^2$
p $(a-b)^2$	q $(k-m)^2$	r $(p-q)^2$
3 Expand and simplify:		
a $(2x+3)^2$	b $(2x+1)^2$	c $(3x+5)^2$
d $(4a+1)^2$	e $(3a+7)^2$	f $(7t+2)^2$
g $(2x-1)^2$	h $(3a-2)^2$	$(5m-4)^2$
j $(4t-7)^2$	k $(6q-1)^2$	$(9n+4)^2$
$\mathbf{m} \left(2x + \gamma\right)^2$	n $(a+3b)^2$	o $(3t - 2x)^2$

3:07B Difference of two squares

PREP QUIZ 3:07B

Evaluate:	
$1 7^2 - 3^2$	2 $(7+3)(7-3)$
3 $4^2 - 2^2$	4 $(4+2)(4-2)$
5 $5^2 - 1^2$	6 $(5-1)(5+1)$
7 $6^2 - 3^2$	8 $(6-3)(6+3)$
9 $10^2 - 9^2$	10 $(10 + 9)(10 - 9)$

If the sum of two terms is multiplied by their difference, another special type of product is formed. If (x + y) is multiplied by (x - y) we get:

$$(x + y)(x - y) = x(x - y) + y(x - y) = x2 - xy + yx - y2 = x2 - y2$$

The sum of two terms multiplied by their difference is equal to the square of the first term minus the square of the second term.

 $(x+y)(x-y) = x^2 - y^2$ 69 3 Algebra

This is an investigation of a special relationship

Teacher's notes

 -
 -

Ar	าร	wers		
Ex	e	rcise 3:07A		
	cegikmoqacegikm	$\begin{aligned} x^{2} + 6x + 9 \\ x^{2} + 2x + 1 \\ m^{2} - 2m + 1 \\ x^{2} + 4x + 4 \\ m^{2} + 22m + 121 \\ x^{2} + 20x + 100 \\ x^{2} + 2xy + y^{2} \\ x^{2} + 2xt + t^{2} \\ k^{2} - 2km + m^{2} \\ 4x^{2} + 12x + 9 \\ 9x^{2} + 30x + 25 \\ 9a^{2} + 42a + 49 \\ 4x^{2} - 4x + 1 \\ 25m^{2} - 40m + 16 \\ 36a^{2} - 12a + 1 \\ 4x^{2} + 4xy + y^{2} \\ 9t^{2} - 12xt + 4x^{2} \end{aligned}$	d f l r b d f h j l	$x^{2} + 10x + 25$ $x^{2} - 12x + 36$ $n^{2} - 10n + 25$ $n^{2} - 16n + 64$ $a^{2} + 24a + 144$ $p^{2} - 18p + 81$ $a^{2} + 2am + m^{2}$ $a^{2} - 2ab + b^{2}$ $p^{2} - 2pq + q^{2}$ $4x^{2} + 4x + 1$ $16a^{2} + 8a + 1$ $49t^{2} + 28t + 4$ $9a^{2} - 12a + 4$ $16t^{2} - 56t + 49$ $81n^{2} + 72n + 16$ $a^{2} + 6ab + 9b^{2}$
Ar Pf		wers P QUIZ 3:07B		_

40 **2** 40 **3** 12 24 **6** 24 **7** 27 **10** 19

9 19

Teaching strategies

Difference of two squares (DOTS) rule

4 12

8 27

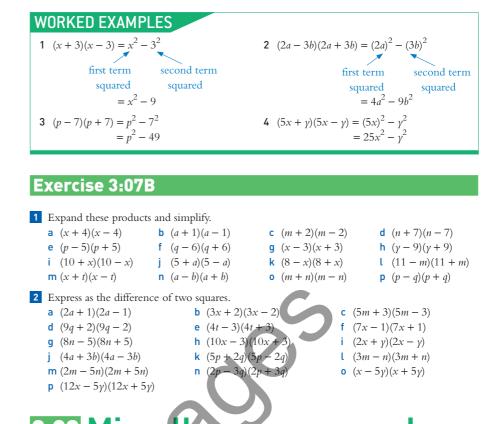
Many students will continue expanding DOTS using FOIL. Students need to practise and be encouraged to use the DOTS rule.

Common errors

Point out to students the common error when expanding DOTS. Explain to the students why this example is incorrect. (2x-5)(2x+5) $=2x^2 - 25$

Interesting fact

A binomial contains two terms (e.g. 2r + by). A trinomial contains three terms.


Any expression containing two or more terms may also be called by the general name polynomial (poly means many).

Ex	er	cise 3:07B		
1		$x^2 - 16$	b	$a^2 - 1$
		$m^2 - 4$	d	$n^2 - 49$
		$p^2 - 25$		$q^2 - 36$
		$x^2 - 9$		$y^2 - 81$
		$100 - x^2$	j	$25 - a^2$
		$64 - x^2$	ι	$121 - m^2$
	m	$x^2 - t^2$	n	$a^2 - b^2$
		$m^2 - n^2$	р	$p^2 - q^2$
2	а	$4a^2 - 1$	b	$9x^2 - 4$
	-	$25m^2 - 9$		$81q^2 - 4$
		$16t^2 - 9$		$49x^2 - 1$
		$64n^2 - 25$		$100x^2 - 9$
		$4x^2 - \gamma^2$	j	$16a^2 - 9b^2$
		$25p^2 - 4q^2$	ι	$9m^2 - n^2$
	m	$4m^2 - 25n^2$		$4p^2 - 9q^2$
	0	$x^2 - 25\gamma^2$	р	$144x^2 - 25\gamma^2$

Homework 3:07

	RA 5	Student name-	
3 ALGED		Class	Data.
Special p squares	roducts: Perfect	6 (x = 11)(x + 11)	$\mathbf{d}_{-}(0-z)(0+z)$
	the two quadratic brackets are is bring multiplied by itself, and		$1 \ (n - 2 g) (n + 2 g)$
$(x - i)^{2}$	(r - 2)(r - 2) $r^2 - 2r_2 - 2r_2 + 81$ $r^2 - 18r_1 + 81$	$= (2_T + 2)(2_T - 2)$	$\mathbf{h}_{-}(ik-3n)(ik+3n)$
Expand and simpley a (x + 1) ²	$\mathbf{k} \left(\mathbf{r} - \mathbf{t} \right)^2$		Result /8
	_	Miscelland	ous examples
4 (x + 2) ²	d (2x+2) ²	B Separat and simplify re 4 + 1 + 2 + - 0	als of these expressions. It is a 21(c + 1)
 O₄ = 0⁴ 	t in-M		
		a 1-a(a+1)	$d_{-}(1-\epsilon)(x+1)$
$(r = 12)^2$	$\ln \left(2 \ln - 1\right)^2$		
		 (3=+2)=+1 	$I = (2\alpha + 2)(\alpha + 2)$
	Result	/8	
	roducts: Differen		als of these expensions.
of two sq	uares	a (x + 2) ² + 6(x - 1)	
the scale is a parton loss	e kens (a t lj(a - l) ar repard un a for difference of two spar	$\frac{\ln d}{m_{1}} = \frac{1}{2} \left((2m + 1)^{2} - (2m + 1) \right)$	(2+ - 1)
Example: $(x + \bar{x})(x - \bar{x})$	$a^{2} + 4a - 4a - 16$ $a^{2} - 16$	$= (2n - 1)^2 + (2n + 1)^2$	
	de unu cancel est.		
Expand and simplify a (u = 3)(u + 3)	$\mathbf{k}_{-}(x+7)(x-7)$		
		_	
-		_	Result /9

70

3:08 Miscellaneous examples

= 6x

Watch out

for tricky

minus signs.

 $= 3x^{2} + 2x - 5 + x^{2} + 4x + 4 - 4x^{2} + 1$

It is important that you are able to expand and simplify algebraic expressions readily and accurately, if you are to use algebra in later problem-solving exercises.
Work through the following miscellaneous questions

after examining the following two examples.

WORKED EXAMPLES

1 $(x+3)^2 - (x-1)(x+2) = [x^2 + 6x + 9] - [x^2 + x - 2]$ = $x^2 + 6x + 9 - x^2 - x + 2$ = 5x + 112 $(3x+5)(x-1) + (x+2)^2 - (2x+1)(2x-1) = [3x^2 + 2x - 5] + [x^2 + 4x + 4] - [4x^2 - 1]$

Australian Signpost Mathematics New South Wales 9 Stages 5.1–5.3

3:08 Content statements

Expand binomial products using a variety of strategies (ACMNA233) [Stage $5.3^{\hat{S}}$]

- use algebraic methods to expand a variety of binomial products, including the special products, eg $(2\gamma + 1)^2$, (3a 1)(3a + 1)
- simplify a variety of expressions involving binomial products, eg (3x + 1)(2 - x) + 2x + 4, $(x - y)^2 - (x + y)^2$

70

Exercise 3:08

Expand and simplify, where possible, each of the following expressions.

Answers

CHALLENGE 3:08

- $1 \quad 10x^2 + 110x + 385$
- **2** $9x^2 + 99x + 330$
- **3** $11a^2 + 110$
- 4 $55m^2 55n^2$

Lesson starter

Rule revision

As a lesson starter have students revise the rules for simplifying expressions.

- a(b + c) Use distributive law • (a + b)(c + d) Use FOIL
- $(a + b)^2$ Use perfect square rule
- $(a-b)^2$ Use perfect square rule
- (a b)(a + b) Use DOTS rule

Teaching strategies

Encourage students to use all of the rules developed to expand a variety of binomial expressions.

• a(b + c) = ab + ac• (a + b)(c + d) = ac + ad + bc + bd• (a - b)(c - d) = ac - ad - bc + bd• $(a + b)^2 = a^2 + 2ab + b^2$ • $(a - b)^2 = a^2 - 2ab + b^2$ • $(a - b)(a + b) = a^2 - b^2$

Answers

Exercise 3:08

				2
1		8x - 21		$x^2 + x - 2$
		$2x^2 - x - 1$		$4x - x^2 + 10$
	-	$9x^2 - 6x + 1$		$x^2 - 25$
		$6x^2 - 23x + 7$	h	$25x^2 - 1$
		$x^2 + 6x + 7$		8 <i>x</i>
	k	$x^2 + 7x - 30$	ι	$81 - \gamma^2$
	m	$x^2 - 15x$	n	••••
	0	$x^2 + 2xy + y^2$	р	$2x^2 + 5xy + 2y^2$
	q	3 <i>x</i>		$a^2 - 4b^2$
		2a - 2x		$15a^2 + 26a - 21$
	u	$4m^2 - 20mn + 25n^2$	۷	$1 - 25\gamma^2$
		21 - 4x		$81x^2 - 64y^2$
2	а	$x^2 + 7x + 11$	b	$a^2 - 9a + 6$
		$x^2 - 2x + 20$	d	$x^2 + 2x + 9$
	е	$2x^2 + 9x + 11$	f	-1
	g	12m + 37	h	$-14\gamma - 98$
		$2x^2 + 6x + 5$		2a + 5
	k	$2x^2 + 8x + 8$	ι	$2a^2 - 4$
		5x + 7		<i>γ</i> − 17
		$4x^2 - x - 14$	р	$3x^2 + 24x + 49$
		$9x^2 - 10x - 2$		10x
		$p^2 - q^2$		$2xy + 2y^2$
		$2a^2 + 5ab + 3b^2$		$2m^2 + 2n^2$
		$3x^2 + 11x + 8$	х	$5x^2 + 6x + 1$
		$12xy + 18y^2$		ab
3		$3x^2 + 12x + 14$	b	$3x^2 + 15x + 20$
		$3a^2 + 1$		5x + 7
	е	$19a^2 + 13ab - 7b^2$		$12x^2 + 3x + 12$
		-4m + 24		$4x^2 - 3y^2 + 1$
	i	$6x^2 + 4x\gamma + 6\gamma^2$	j	$-4\gamma^2$

Extension

Binomial expansions and Pascal's triangle

Have students investigate and write a report on how they can use Pascal's triangle to expand the following expressions.

- 1 $(1+3x)^2$
- 2 $(2+x)^3$
- 3 $(1-x)^3$
- 4 $(1-5x)^5$
- 5 $(x+6)^3$
- **6** $(a-b)^7$
- 7 $(1+\frac{3}{-})^4$

[Understanding, Communicating]

Learning across the curriculum

Literacy

Have students explain how to expand expressions using the rules for FOIL, perfect squares and DOTS, showing the steps in detail.

[Understanding, Fluency]

Homework 3:08

	RA 5	Student name-	Student name-				
3 ALGED		Case	Date-				
Special p squares	roducts: Perfect	+(r-11)(r+11)	$\mathbf{d}_{-}(2-\epsilon)(2+\epsilon)$				
	other two quadratic brackets are is bring multiplied by itself, and		1 (1 - 200 + 20				
$(x - 0)^2$	(x - 2)(x - 2) $x^2 - 2x - 2x + 41$	$=(\mathcal{I}_{T}+3)(\mathcal{I}_{T}-3)$	$\mathbf{h}_{-}(ik-3n)(ik+3n)$				
I mail and smaller							
 Expand and simplify (a + 3)² 	$\mathbf{k}_{-}(z=1)^{2}$		Result /B				
		BEE Miscellane	ous examples				
$\mathbf{x}_{-}(u+H)^{\mu}$	$d = (2m + 2)^{2}$	Expand and simplify re	als of these repression.				
		a = + 3(s - i)	$\mathbf{k}_{-}(x+2)(x+4)$				
 (3a - 3)² 	$I = (q - 1q)^2$		_				
-		a 1 - a(a + 1)	$d\cdot (1-z)(z+1)$				
$(r = 12)^2$	$\mathbf{h}_{-}(2)_{0}=1)^{2}$						
		 (3a + 2)a + 3 	$I = \{2n + 2\}(n + 2)$				
	Result	/8					
	roducts: Differen						
of two so	uares	$a (x + 2)^2 + 6(x - 1)$,					
	ie kens (a + l)(a - l) are requisit ran a the difference of ran oper		(h = 1)				
Example: $(r + \bar{z})(r - \bar{z})$	- 1 ² + 44 - 44 - 14 - 1 ² - 14	$a (2a - 1)^2 + (2a + 1)^2$					
Notice how the runs and	date serves cancel and.		5				
I mail and smaller							
 (a = 3)(a + 3) 	$\ln (x + 7)(x - 7)$						
_		_					
	_	_	Beault /9				
6 Australian Signat	d Mathematics New South Wal-	stitues5.1-5.1 Honework/	logan				

INVESTIGATION 3:08

Perfect squares

Answers

1	а	10201	b	42 0 25	с	1008016	
	d	5184	е	9604	f	39601	
	g	990025	h	4489			
Dif	Difference of two squares						
1	а	396	b	840	с	1425	
	d	12920					
2	а	$\sqrt{56}$	b	$\sqrt{540}$	с	$\sqrt{445}$	
	d	$\sqrt{960}$					

INVESTIGATION 3:08 USING SPECIAL PRODUCTS IN ARITHMETIC Perfect squares Example Using $(a \pm b)^2 = a^2 \pm 2ab + b^2$, evaluate $(103)^2$. Solution Writing 103 as (100 + 3)Then $103^2 = (100 + 3)^2$ $= 100^2 + 2 \times 100 \times 3 + 3^2$ $= 10\,000 + 600 + 9$ = 10609Similarly, the square of a number like 98 could be found by writing 98 as (100 - 2). Exercise 1 Following the example above, evaluate: **a** 101² **b** 205^2 $c 1004^2$ **d** 72^2 $e 98^2$ h 67^2 $f 199^2$ **q** 995² **Difference of two squares** Example Using $(a - b)(a + b) = a^2 - b^2$, evaluate $100^2 - 97$ Solution $100^2 - 97^2 = (100 - 97)(100 + 97)$ $= 3 \times 197$ = 591This method can be useful when finding a shorter side of a right-angled triangle. Example Solution -48^2 50 (50 - 48)(50 + 48) $\times 98$ = 196 18 $x = \sqrt{196}$ = 14 Exercis **b** $73^2 - 67^2$ c $145^2 - 140^2$ d $651^2 - 641^2$ 2 Use the method above to find the value of x for each triangle. (Leave your answer in surd form.) с 15 22 12 32 13

Australian Signpost Mathematics New South Wales 9 Stages 5.1–5.3

Teacher's notes

72

MATHS TERMS 3

algebra

• a branch of mathematics where numbers are represented by symbols

algebraic expression

• a group of terms and numbers that are joined by addition or subtraction signs binomial

- · an algebraic expression consisting of two terms.
- e.g. 2x + 4, 3x 2y

brackets

• the name given to these grouping symbols: []

cancel

• to simplify a fraction by dividing the numerator and denominator by any common factor,

e.g.
$$\frac{7 \times 1 \div 3}{10 \times 30 \div 3}$$
 so $\frac{21}{30} = \frac{7}{10}$

collect like terms

• to simplify an algebraic expression containing many terms by addition and/ or subtraction,

e.g. 5x + 3 + 7x - 4= 12x - 1

difference of two squares

• the result of multiplying two binomials which are the sum and difference of the same terms,

e.g. $(a+3)(a-3) = a^2 - 3^2$ $= a^2 - 9$

denominator

- the bottom number of a fraction expand
- to remove grouping symbols by multiplying each term inside the grouping symbols by the term outside factorise

· to write an expression as a product

• the reverse of expanding

like terms

• terms that have identical pronumeral parts, e.g. 7x and 10x, $5a^2b$ and $-3a^2b$

numerator

• the top number of a fraction

parentheses

· the name given to these grouping symbols: ()

perfect square

• when a binomial is multiplied by itself, e.g. $(x + 5)^2$ or $(2a - 3b)^2$

pronumeral

· a symbol, usually a letter, used to represent a number

substitution

· the replacing of a pronumeral with a numeral in an expression, e.g. to substitute 3 for *a* in the expression 4a - 2 would give: 4(3) - 2 = 10

A machine counts coins by weight. What is the value of a pile of \$M coins that weighs W grams if each coin weighs w arams?

73 3 Algebra

Teacher's notes

Learning across the curriculum

Literacy

In groups, have students create a crossword using the words in Maths terms 3. Free crossword puzzle generators can be found on the internet. Once completed, each group must solve another group's puzzle. [Understanding]

Technology

Prime factorisation

Search the internet for 'prime factorisation tool'. Try to find your unique 'birthday' set of prime factors using technology. For example, the birth date 7/5/1995 would be the number 751995.

Extension

Factorisation using grouping 'two and two'

Research how you can factorise the following expressions.

Answers:

$1 4\gamma + c\gamma + 2c + 8$	1 $(y+2)(c+4)$
2 $a^2 - 3a - 6 + 2a$	2 $(a-3)(a+2)$
3 5 <i>a</i> − <i>ab</i> − 2 <i>b</i> + 10	3 $(a+2)(5-b)$
4 $3z + 2y + 6 + yz$	4 $(z+2)(3+\gamma)$

Learning across the curriculum

Critical and creative thinking

Discuss and explain when factorising $36a^2 + 18a$, why $6(6a^2 + 3a)$ is not the best answer.

[Understanding, Reasoning]

P Digital resources

ProductLink Maths terms 3 (Drag-and-drop)

DI	AG	NOSTIC TES	ΤЗ	3
1	а	2a + 3b	b	$2p^2 + 2p$
	с	2ab	d	4a - x - 2
2	а	56 <i>m</i>	b	30 <i>ab</i>
	С	$10\gamma^2$	d	$-8n\gamma$
3	а	3 <i>a</i>	b	5γ
	с	$\frac{3c}{2b}$	d	$\frac{-1}{3\gamma}$
4	а	x	b	$-\frac{x}{6}$
	с	$\frac{7a}{15}$	d	$\frac{9m}{8}$
5	а	$\frac{n}{4}$	b	$\frac{10}{ab}$
	с	$\frac{1}{2}$	d	$\frac{6}{5}$
6	а	6 <i>m</i>	b	2
	с	12	d	$\frac{5a}{2}$
7		9x + 63	b	30 <i>a</i> – 12
		$p^2 + 3p$		$15a - 6a^2$
8		-3x - 6		-2m + 16
	С	-15x - 20		-7 + 2m
9	а	-x	b	10 <i>n</i> – 7
	С	$-a^2+6ab$		
10	а	$\frac{7x+26}{10}$	b	$\frac{12a+1}{12}$
	с	$\frac{5n+11}{12}$		
11	а	5(m + 2)		x(x - 3)
	с	3a(2b + 5)	d	$-4(2\gamma + 3)$
12		$x^2 + 7x + 12$	b	$2a^2 - 7a + 3$
		$6 - \gamma - \gamma^2$	d	$\frac{2x^2 - 5xy - 3y^2}{a^2 - 14a + 49}$
13	а	$x^{2} + 4x + 4$	b	$a^2 - 14a + 49$
		$4y^2 + 20y + 25$		$m^2 - 2mn + n^2$
14	а	$x^2 - 9$	b	$y^2 - 49$ $x^2 - y^2$
	с	$4a^2 - 25$	d	$x^2 - y^2$

Assessment

Diagnostic test 3

Split the test in half. Do the first two columns of Questions 2 to 11 as a test. Have each student mark their own paper, giving themselves a score. Students complete their own peer assessment on each section of the algebra unit by writing reflective comments on which sections they did well in and which sections they need to revise. Design a summary sheet with examples and comments on how to complete the problems before completing the second half of the test. Again, have students mark their own paper. [Understanding, Communicating]

🔀 DIAGNOSTIC TEST 3 💦 ALGEBRA

Each part of this test has similar items that test a certain type of example. Errors made will indicate areas of weakness. Each weakness should be treated by going back to the section listed.

Luci	i weakiness should be	treated by going back	to the section listed.		
1	Simplify: a $5a + 2b - 3a + b$ c $6ab - 4ba$		b $5p^2 + 2p - 3p^2$ d $6a - 2x + 5 + x - 3p^2$	2a — 7	3:01
2	Simplify: a $8 \times 7m$	b $5a \times 6b$	c $10\gamma \times \gamma$	d $-4n \times 2\gamma$	3:01
3	Simplify: a 6 <i>a</i> ÷ 2	b $15xy \div 3x$	c 12 <i>ac</i> ÷ 8 <i>ab</i>	d $-6x \div 18xy$	3:01
4	Simplify: a $\frac{3x}{5} + \frac{2x}{5}$	b $\frac{x}{3} - \frac{x}{2}$	$c \frac{4a}{5} - \frac{a}{3}$	d $\frac{5m}{8} + \frac{m}{2}$	3:02A
5	Simplify: a $\frac{3}{4} \times \frac{n}{3}$	b $\frac{2}{a} \times \frac{5}{b}$	$\frac{5}{x} \times \frac{x}{10}$	d $\frac{3b}{2} \times \frac{4}{5b}$	3:02B
6	Simplify completely: a $\frac{3m}{2} \div \frac{1}{4}$	b $\frac{x}{3} \div \frac{x}{6}$	$c \frac{8a}{3b} \div \frac{2a}{9b}$	d $\frac{ab}{2} \div \frac{b}{5}$	3:04B
7	Expand: a $9(x + 7)$	b $6(5a-2)$	c $p(p+3)$	d $3a(5-2a)$	3:03
8	Expand: a $-3(x+2)$	b $-2(m-8)$	-5(3x+4)	d −(7 − 2 <i>m</i>)	3:03
9	Expand and simplify: a $x(x-1) - x^2$	b $7n - 4 + 3($	n – 1) c 2a(a	(+ b) - a(3a - 4b)	3:03
10	Simplify: a $\frac{x+4}{2} + \frac{x+3}{5}$	b $\frac{2a-5}{4} + \frac{3a}{4}$	$\frac{n+8}{6}$ c $\frac{3n+4}{4}$	$\frac{1}{2} - \frac{n-2}{3}$	3:04
11	Factorise completely a $5m + 10$: b $x^2 - 3x$	c 6 <i>ab</i> + 15 <i>a</i>	d $-8\gamma - 12$	3:05
12	Expand and simplify: a $(x + 3)(x + 4)$	b $(a-3)(2a-1)$	$c (2 - \gamma)(3 + \gamma)$	$(2x+\gamma)(x-3\gamma)$	3:06
13	Expand and simplify: a $(x + 2)^2$	b $(a-7)^2$	c $(2\gamma + 5)^2$	d $(m-n)^2$	3:07A
14	Expand and simplify: a $(x+3)(x-3)$		c $(2a+5)(2a-5)$	d $(x+\gamma)(x-\gamma)$	3:07B

74 Australian Signpost Mathematics New South Wales 9 Stages 5.1–5.3

Teacher's notes

ASSIGNMENT 3A Chapter review

ASSIGNMENT 3A	Chapter revie	?W		ASSIGNMENT 3A	
1 Simplify the follo	wing.	4 Expand and simplify:		1 a 7 <i>a</i> b	$18x^{2}$
a 6 <i>a</i> + <i>a</i>	b $6x \times 3x$	a $x(x-2)$		c -4 <i>a</i> d	$2x^2$
c <i>a</i> – 5 <i>a</i>	d $x^2 + x^2$	b $x - 2(x - 2)$		e 6 f	$\frac{3\gamma}{2}$
e $18x \div 3x$	f $12\gamma \div 8$	c $(x-2)(x-2)$			
g $2x + 3\gamma$	h $3ab \times 2b$	d $(x-2)(x+2)$		g $2x + 3y$ h	$6ab^2$
i $12a^2b \div 6a$	j 5ab + 7ab	e $(x+2)^2$		i 2ab j	12ab
	4x - 3y - 5x	f $(2-x)^2$		$\mathbf{k} 6a^2 - a \qquad \mathbf{l}$	$-x - 3\gamma$
m $12 + 6x + 7 - x$ o $x^2 - 3x + 2x + x$		5 Expand and simplify where possible.			12x
x - 3x + 2x +	$3x^2$ p $12x - 6x \div 3$	a $(x-1)(x+2)$		o $4x^2 - x$ p	10x
Simplify:		b $5x + 3(x - 1)$		2 a $\frac{5x}{6}$ b	$\frac{3a}{10}$
a $\frac{x}{2} + \frac{x}{3}$	b $\frac{2a}{5} - \frac{a}{10}$	c $2(x+3) - 2x - 3$		z a <u>6</u> b	10
	5 10	d $(2x+1)(x-7)$		c $\frac{5ab}{4}$ d	$\frac{2}{3}$
$= \frac{3a}{2} \times \frac{5b}{6}$	d $\frac{10\gamma}{3} \div 5\gamma$	e $(x+5)(x-5)$		4	3
	3	f $(3x+2)^2$		e $\frac{16x}{15}$ f	$\frac{13m}{30}$
$rac{7x}{5} - rac{x}{3}$	$f = \frac{3m}{5} + \frac{m}{3} - \frac{m}{2}$	g $x(x-3) + 2(x+1)$			
	5 5 2	h $(2 - x)(3 - x)$		$a \frac{8n}{2}$ h	$\frac{5x+11}{6}$
$\frac{6n}{5} \times \frac{10}{5} \div \frac{3}{5}$	h $\frac{x+3}{2} + \frac{x+1}{3}$	i $(x + y)(y - x)$ j $(2x - y)^2$			
		k $5[x+3(x+1)]$		$\frac{7a-4}{1}$	$\frac{8n-7}{18}$
i $\frac{2a-1}{5} + \frac{3a-2}{10}$	$\frac{2}{5}$ j $\frac{2n-1}{6} - \frac{2-n}{9}$	$k \ 5[x + 5(x + 1)]$ $l \ [3x - (x - 2)]^2$			
5 10	6 9	$\left[\int x - (x - 2) \right]$		3 a 3(a + 5) b	3(2m + 3)
Factorise fully:					x(a - 3)
a 3 <i>a</i> + 15	b 6 <i>m</i> + 9				2x(2x-1)
15 – 5y	d $ax - 3x$				3x(2x - 3
2x + 6xy	f $4x^2 - 2x$				-x + 4
g 9ab – 6bc	h $6x^2 - 9x + 3xy$				$x^2 - 4$
					4 - 4x + x
					8x - 3
				c 3 d	$2x^2 - 13x$
					$9x^2 + 12x$
					6 - 5x + x
and the second second	and the second second second	If the width of one	figure		$4x^2 - 4x\gamma$
		is x, what is the wi	dth of:	k $20x + 15$ l	$4x^2 + 8x -$
		a 2 figures b 4 figures			
		c half a figure?			
				Teaching stra	tegies
				•	•
				Question 2	
				When students have con	mpleted Q
				of Assignment 3A, ask t	-
		~		common errors that oc	
				with algebraic fractions.	
				their understanding of t	
				their understanding of t	ne concep
		3 /	Algebra 75	Assessment	
				ASSESSIIIEIIL	

Teacher's notes

Answers

9			
а	7 <i>a</i>	b	$18x^{2}$
с	-4a	d	$2x^2$
e	6	f	$\frac{3\gamma}{2}$
g	2x + 3y	h	$6ab^2$
i	2ab	j	12 <i>ab</i>
	$6a^2 - a$	ι	$-x - 3\gamma$
m	19 + 5x	n	12 <i>x</i>
0	$4x^2 - x$	р	10x
а	$\frac{5x}{6}$	b	$\frac{3a}{10}$
с	$\frac{5ab}{4}$	d	$\frac{2}{3}$
e	$\frac{16x}{15}$	f	$\frac{13m}{30}$
g	8n 7	h	$\frac{5x+11}{6}$
i	$\frac{7a-4}{10}$	j	$\frac{8n-7}{18}$
a	3(a + 5)	b	
c	$5(3 - \gamma)$	d	x(a-3)
e	2x(1 + 3y)	f	2x(2x-1)
g	3b(3a - 2c)	h	$3x(2x - 3 + \gamma)$
а	$x^2 - 2x$	b	
с	$x^2 - 4x + 4$		$x^2 - 4$
е	$x^2 + 4x + 4$		$4 - 4x + x^2$
а	$x^2 + x - 2$	b	
с	3	d	$2x^2 - 13x - 7$
е	$x^2 - 25$		$9x^2 + 12x + 4$
g	$x^2 - x + 2$		$6 - 5x + x^2$
i	$y^2 - x^2$	j	$4x^2 - 4xy + y^2$
k	20x + 15	ι	$4x^2 + 8x + 4$

S

Question 2 xplain the working ll enhance epts.

Assessment

Assignment 3A

It is important for students to show their working. Award marks for working when it is applicable. Students could submit the assignment as an assessment task.

Teaching strategies

Assignment 3B

This assignment will help develop problemsolving skills and mathematical techniques. As a group, research other census data that has been graphed. Give students an opportunity to analyse graphs before completing the assignment.

Technology

Census data

Search the internet for 'graphed census data'. Create your own questions on the graphed census data. Present the questions to the class.

Worked solutions

ASSIGNMENT 3B

- 1 a square
 - **b** rectangle
 - c parallelogram
 - d rhombus
 - trapezium е
 - pentagon f
 - hexagon g
 - octagon h
 - i kite
- isosceles triangle i
- 2 a An octagonal prism
- **b** Sample answer: 200 mL
- **3** $2 + 3 \times 2$ (children and spouses) $+ 3 \times 3$ (grandchildren) = 17
- **4 a** 4 (1 and 9, 2 and 8, 3 and 7, 4 and 6)
- **b** 10 (make a list)
- **5 a** 4 out of 10 = 40%
- **b** 0.5 out of 10 = 5%
- 6 a Tasmania; 60% (the highest purple bar on the left)
 - **b** Victoria; over 90% (the highest purple ba on the right)
 - c Queensland, just under 3000 per 10000
 - d About 50%; between 30% and 40%

ASSIGNMENT 3B Working mathematically

9

1 Refer to ID Card 4 on page xxi to

- identify the mathematical terms numbered: **a** 1 **b** 2 **c** 3 **d** 4 **e** 5 **f** 6 **g** 7 **h** 8 i
- **j** 11
- 2 a What geometric shape has inspired the design of these coffee cups?

4 The numerals 1 to 10 are written on ten

a How many pairs of cards have a sum

b How many groups of three cards are

5 A particular country's exports are shown in

what percentage of the country's exports

the bar graph below (reduced in size). Find

beef

- 4 cm -

10 cm or 100 mm

woo

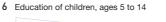
separate cards, one on each card.

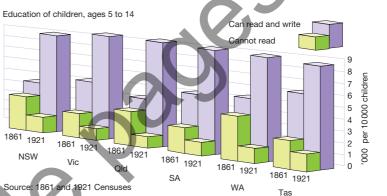
there that have a sum of 18?

wheat

5 mm

of 10?


are taken up by:


a beef

minerals

b minerals.

- **b** What would you estimate the capacity of the cup to be?
- 3 Diane and Garry married and had three children. Each child married and had three children. Assuming that no one has died, how many people are now in this extended family altogether?

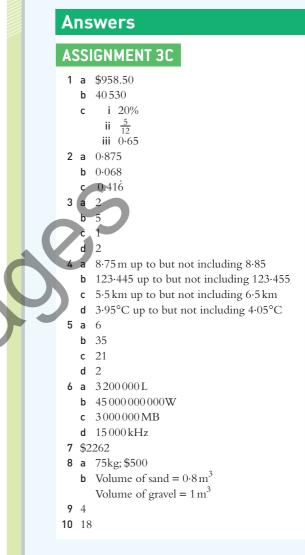
In 1861, which state had the greatest number per 10000 children who could read and write? What percentage was this?

- In 1921, which state had the greatest percentage of children who could read and write? What percentage was this?
- Which state had 4000 per 10000 children who could read and write in 1861? About how many in that state could not read in 1861?
- d Consider Western Australia in 1861. Approximately what percentage could read and write? Approximately what percentage could not read? (To determine this, measure the height of this column and measure this height on the scale.)

Australian Signpost Mathematics New South Wales 9 Stages 5.1–5.3

Teacher's notes

76


ASSIGNMENT 3C Cumulative revision

1	 a Increase a wage of \$900 by 6.5%. b In 1980 the population of a town was 42 000. By 2010 the population had decreased by 3.5%. What was the population of the town at that time? c Which is larger? i 15% or 20% ii 5/12 or 2/5 iii 0.65 or 0.0655 	1:01, 2:01
2	Change the following to decimals. a $\frac{7}{8}$ b 6.8% c $\frac{5}{12}$	1:01
3	State the number of significant figures in the following measurements. a $8.8 L$ b $123.45 m$ c $6 km$ d $4.0^{\circ}C$	1:05
4	In what range would each of the measurements in Question 3 lie?	1:10
5	Estimate the answers to the following calculations. a $\frac{9 \cdot 89 \times 3 \cdot 123}{5 \cdot 089}$ b $4 \cdot 95^2 + 2 \cdot 13 \times 5 \cdot 237$ c $\frac{212 \cdot 3}{\sqrt{104 \cdot 2}}$ d $\frac{48 \cdot 24 \times 0 \cdot 888}{(12 \cdot 5 - 7 \cdot 056)^2}$	1:06, 1:07
6	Convert the following. a 3·2ML to L b 45 GW to W c 3TB to MB d 15MHz to kHz	1:09
7	Car A uses petrol at the rate of $4.8 \text{ L}/100 \text{ km}$, whereas car B uses it at a rate of $10 \text{ L}/100 \text{ km}$. What will the difference in petrol costs be in a year in which both cars travel 30000 km , if the petrol costs on average \$1.45/L?	1:04, 2:01
8	 a A greengrocer buys 20 cases of oranges at a cost of \$15 per case. Each case contains 10 kg of oranges. If he sells the oranges at \$4/kg, how many kilograms must he sell before he makes a profit? If he sells all the oranges what will be his profit? b Concrete is made by mixing volumes of cement, sand and gravel in the ratio 1:4:5. Jim calculates that he needs 2 m³ of concrete to finish a job. How many cubic metres of sand and gravel does he need to order to make the concrete? 	2:01
9	What is the last digit of the number 2 ²⁰¹⁴ ?	2:02
10	How many pairs of parallel edges are there in a rectangular prism?	2:02

Assessment

Assignment 3C

Use the cumulative revision as exam practice. Ensure that marks are awarded for working. Keep track of cumulative revision scores to check on improvement.

77

3 Algebra

Teacher's notes
