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iii Introduction and dedication

INTRODUCTION AND DEDICATION

J.B. Fitzpatrick
It is interesting to wonder whether J. B. Fitzpatrick (‘Bernie’) realised in 1983 just how popular 
his book New Senior Mathematics would be. That first edition of New Senior Mathematics was 
to remain in print for almost 30 years. It has stood the test of time thanks to the quality, rigour 
and variety of its questions, its accuracy and its high mathematical standards.

As Fitzpatrick wrote in 1983: ‘Mathematics, like many other things, is best learnt by doing.  
A student begins to appreciate the power of mathematics when he or she has achieved 
a mastery of basic techniques, not after reading lengthy explanations … The emphasis 
throughout the book is on the understanding of mathematical concepts’ (Introduction,  
New Senior Mathematics 1984).

J. B. Fitzpatrick passed away in 2008. Fitzpatrick was a respected author, teacher and figurehead 
of mathematics education.

Bob Aus 
Bob Aus taught in New South Wales high schools for 40 years, retiring in 2007. During that 
time Bob taught all courses from Years 7 to 12 up to Level 1 / 4-unit / Extension 2. He has 
marked HSC examination papers and has been involved in the standards setting process 
as judge and chief judge for the three Calculus-based courses over four years. He has also 
completed review work for the NSW Board of Studies and represented NSW at a week-long 
review and standards setting of the upper level course from each state prior to the development 
of the Australian National Curriculum for senior students.

Bob spent time as Regional Vocational Education Consultant in the North Coast region and 
was a Mathematics consultant in the Hunter region. When he retired he was Head Teacher 
Mathematics at Merewether High School and enjoyed teaching an Extension 2 class with 
24 students.

Bob’s first publication was in 1983 and he has been involved with writing a range of textbooks 
and study guides since then, including revising and updating the New Senior Mathematics 
series 2nd edition in 2013.

Bob has presented talks on the three Calculus-based courses throughout the state. He has  
co-written the Years 6–9 Mathematics syllabus for the Abu Dhabi Education Authority, as 
well as managing the writing project for support material for this course. He also wrote the 
Years 10–12 syllabus for their Calculus-based course.

This third edition of New Senior Mathematics updates it for the new Stage 6 HSC courses in 
NSW to be implemented in Year 11, 2019.
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NEWSENIOR
MATHEMATICS
THIRD EDITION

New Senior Mathematics Extension 1 for Years 11 & 12 is part 
of  a new edition of  the well-known Mathematics series for 
New South Wales. The series has been updated to address 
all requirements of  the new Stage 6 syllabus. We have 
maintained our focus on mathematical rigour and challenging 
student questions, while providing new opportunities for 
students to consolidate their understanding of  concepts and 
ideas with the aid of  digital resources and activities.

Student Book
The first three chapters of  the first student book contain 
revision material that provides the necessary foundation for 
the development of  senior mathematics concepts. In the new 
edition you’ll also find:

•	 content built on a rigorous, academic approach that 
promotes excellence and prepares students for higher 
education

•	 a simple, convenient approach with Year 11 and 12 content 
in one book for Advanced and Extension 1, with colour 
coding to distinguish year levels

•	 digital technology activities that promote a deeper 
understanding, allowing students to make connections, and 
visualise and manipulate data in real time.

Student Worked Solutions
The New Senior Mathematics Extension 1 for Years 11 & 12 
Student Worked Solutions contains the fully worked solutions for 
every second question in New Senior Mathematics Extension 1 
for Years 11 & 12.

Reader+
Reader+, our next generation eBook, features content and 
digital activities, with technology such as graphing software and 
spreadsheets, to help students engage on their devices.

There are also teacher support materials, such as practice 
exams, question banks, investigation assignments, and fully 
worked solutions to cover all internal and external assessment 
items and save you time.
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v Features of the third edition Student book/Reader+

FEATURES OF THE 3RD EDITION 
STUDENT BOOK/READER+

YEAR LEVELS
Year levels are indicated on each page for easy 
identification of Year 11 and 12 content.

MAKING CONNECTIONS
This eBook feature provides teachers and students with 
a visual interactive of specific mathematics concepts or 
ideas to aid students in their conceptual understanding.

EXPLORING FURTHER
This eBook feature provides an opportunity for students 
to consolidate their understanding of concepts and 
ideas with the aid of technology, and answer a small 
number of questions to deepen their understanding and 
broaden their skill base. These activities should take 
approximately 5–15 minutes to complete.

CHAPTER REVIEW
Each chapter contains a comprehensive review of chapter 
content.

SUMMARY PAGES
A comprehensive course summary is provided at the end 
of the book.
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New Senior Mathematics Extension 1 for Years 11 & 12 230

	 11.1  VOLUMES OF SOLIDS OF REVOLUTION	

You have seen that the area of a region bounded by a line y = r, the x-axis and the  
ordinates x = 0 and x = h can be found by adding up the areas of all the rectangles  
of width δ x and height r between x = 0 and x = h, as δ x becomes vanishingly  

small: A = lim
δ x→0

f x( )δ x
0

h

∑ .

This area is given by the definite integral A = r dx
0

h

Ú , which is A = r dx
0

h

Ú = rx[ ]0
h = rh.  

You should recognise this as the area of a rectangle of sides r and h.
Consider what happens when the area bounded by y = r, the x-axis and the ordinates x = 0 and x = h is rotated about 
the x-axis to form a solid of revolution, as shown in the diagram below to the left. The solid of revolution formed is a 
cylinder of radius r and height h.

The rectangles of side r and width δ x have become circular disks of radius r and 
thickness δ x. The volume of this disk is given by ∆V = π f x( )( )2δ x. Adding all the disks as 

δ x gets smaller gives V = lim
δ x→0

π f x( )( )2δ x
0

h

∑ , which is given by the definite integral 
V = π r2 dx

0

h

∫ .

Thus the volume is V = π r2 dx
0

h

∫ = π r2x⎡⎣ ⎤⎦ 0

h
= π r2h, which you should recognise as the 

volume of a cylinder of radius r and height h.

When the arc CD of the curve y = f (x) on the interval a ≤ x ≤ b is  
rotated about the x-axis, the volume of the solid of revolution  
formed is given by:

V = p f (x)( )2 dx
a

b

Ú     or    V = p y2 dx
a

b

Ú

hδx

r

O

y

x

h

δx

r

–r

O

y

x

ba

C

D

O

y
y = f(x)

x

CHAPTER 11
Applications of calculus
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231 Chapter 11  Applications of calculus

YEAR 12

	 Example 1	
	� Calculate the volume of the solid formed when the portion of the line y = 2x between x = 0 and x = 3 is  

rotated about the x-axis. What is the name of the kind of solid formed?

Solution
Draw a diagram: 

The solid is a right circular cone of base radius 6 and height 3.

Volumes of solids of revolution—formal development
Consider a continuous function f in the interval a ≤ x ≤ b. If  
the plane section ABDC is rotated about the x-axis then a solid is 
generated with circular vertical cross-sections, as shown in  
the diagram on the right. This solid is called a solid of revolution.
P(x, y) is a point on the curve y = f (x) and Q x +δ x , y +δ y( )   
is a point close to P. The ordinate PM describes a circle of area π y2 
and QN describes a circle of area π (y + δ y)2.
The typical lower rectangle PRNM describes a cylinder of volume 
π y2 δ x and the typical upper rectangle describes a cylinder of 
volume π (y + δ y)2 δ x. If a typical layer PQNM describes a solid of 
volume δ V, then:

	 π y2 δ x < δ V < π  (y + δ y)2δ x

	 Thus:	 π y2δ x
a

b

∑ < V  < π y +δ y( )2δ x
a

b

∑

	As δ x → 0:	 V = lim
d xÆ0

p y2 d x
a

b

Â
= p y2 dx

a

b

Ú
= p y2 dx

a

b

Ú

Hence, volume of a solid of revolution:

V = p y2 dx
a

b

Ú     where y = f (x)

3O

y

y = 2x

x

Volume = π y2 dx
a

b

∫
= π 2x( )2 dx

0

3

∫
= 4π x2 dx

0

3

∫
= 4π x3

3
⎡
⎣⎢

⎤
⎦⎥ 0

3

= 4π 9 − 0( )
= 36π  units3

δx b
O

A

Q

P R

NM

B

DC

a

y

x
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232 New Senior Mathematics Extension 1 for Years 11 & 12 

YEAR 12

	 Example 2	
	 Find the volume of a right circular cone of height h and base radius r.

Solution
The cone can be considered as a solid of revolution generated  
by rotating the right-angled triangle OAB about the x-axis.  
The equation of OA is y = rx

h .

V = π y2 dx
a

b

∫
V = π r2x2

h2 dx
0

h

∫ = πr2

h2 x2 dx
0

h

∫
= πr2

h2
x3

3
⎡
⎣⎢

⎤
⎦⎥ 0

h

= πr2

h2 × h3

3

= 1
3πr

2h

	 Example 3	
	 Find the volume of a sphere of radius r.

Solution
The volume of a sphere can be considered as the volume generated by rotating the semicircle defined by 
y = r2 − x2 , −r ≤ x ≤ r, about the x-axis.

	 Hence:

V = π y2 dx
−r

r

∫ 	 where y = r2 − x2

= π r2 − x2( )dx
−r

r

∫     because y2 = r2− x2

= π r2x − x3

3
⎡
⎣⎢

⎤
⎦⎥ −r

r

= π r3 − r3

3
⎛
⎝⎜

⎞
⎠⎟ − −r3 + r3

3
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= 4
3πr

3

Example 3, above, proves the formula for the volume of the sphere—a formula that you have used for many years. 
The formula for the area of a circle A = π r2 can similarly be proved using calculus.

	 Example 4	
	� The part of the parabola y = x2 between x = 1 and x = 3 is rotated about the y-axis. Calculate the volume 

generated.

δx

(h, 0)

P(x, y)

B

r

A(h, r)

O

y

x

P(x, y)

(r, 0)O

y

x

δx
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Solution

y = x2:    x = 1, y = 1; x = 3, y = 9    V = p x2 dy
1

9

Ú     where x2 = y

V = π y dy
1

9

∫
= π y2

2
⎡

⎣
⎢

⎤

⎦
⎥

1

9

= π 81
2 − 1

2( )
= 40π  units3

 

Rotating about the y-axis

When the arc CD of the curve x = g (y) on the interval c ≤ y ≤ d is rotated  
about the y-axis, the volume of the solid of revolution formed is given by:

V = p g(y)( )2 dy
c

d

Ú     or    V = p x2 dy
c

d

Ú

	 Example 5	
	� Find the volume of the solid formed when the area bounded by the parabola y = 4 − x2 and the x-axis  

is rotated about:	 (a)	 the x-axis	 (b)	 the y-axis.

Solution
(a)	 Rotate about x-axis:

2

4

P(x, y)
y = 4 – x2

O–2

y

x

V = π y2 dx
−2

2

∫     where y = 4 − x2

(b)	 Rotate about y-axis:

2

4

P(x, y)

y = 4 – x2

O

y

x–2

	 V = p x2 dx
0

4

Ú     where x2 = 4 − y

= π 16 − 8x2 + x4( )dx
-2

2

∫
= π 16x − 8x3

3 + x5

5
⎡
⎣⎢

⎤
⎦⎥ −2

2

= π 32 − 64
3 + 32

5( ) − −32 + 64
3 − 32

5( )( )
= 512π

15  units3

= π (4 − y)dx
0

4

∫
= π 4y − y2

2
⎡

⎣
⎢

⎤

⎦
⎥

0

4

= π 16 − 8( ) − 0( )
= 8π  units3

31–3

9

O

y

x–1

1

δy P(x, y)

d D

C
x = g(y)

O

c

x

y
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	 Example 6	
	 Calculate:    (a)   the area bounded by the curve y = e1.5x, the coordinate axes and the line x = 2

(b)   the volume obtained by rotating this area about the x-axis.

Solution
(a)	 y = e1.5x, y = 0, x = 2

	

Area = e1.5x dx
0

2

∫
= 2

3 e
1.5x⎡

⎣⎢
⎤
⎦⎥ 0

2

= 2
3 e3 − e0( )

=
2 e3 −1( )

3 ≈ 12.72 units2

(b)	 Volume = π y2 dx
0

2

∫  where y = e1.5x.

	  

= π e3x dx
0

2

∫
= π

3 e3x⎡⎣ ⎤⎦ 0

2

= π
3 e6 − e0( )

=
π e6 −1( )

3
≈ 421.4 units3

	 Example 7	
	 Find:  (a)	 the area bounded by the curve y = loge x, the x-axis and the ordinate x = 2

     (b)	� the volume of the solid of revolution formed by rotating the area bounded by the curve y = loge x, 
the coordinate axes and the line y = loge 2 about the y-axis.

Solution
(a)	 Area = loge x dx

1

2

∫
	 Instead of trying to evaluate this integral directly, draw a diagram.

	 1 2O

A

D E C

Bloge2

x

y

	

		

= ey⎡⎣ ⎤⎦ 0

loge 2

= e loge 2 − e0

= 2 −1
= 1

		  Area ABCD = 2 loge 2
			   ∴ Area BCE = 2 loge 2 − 1

			   ≈ 0.386 units2

y

1

2
xO

y = e1.5x

y

2 xO

This problem requires the area of the shaded region BCE. It 
can be obtained by finding the area of the rectangle ABCD and 
subtracting the area ABED.
Because y = loge x, you can write x = e y.

At x = 2, y = loge 2:    Area ABED = ey dy
0

loge 2

∫
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(b)		 Volume = π x2 dy
0

loge 2

∫     where x = e y

		

= π e2 y dy
0

loge 2

∫
= π

2 e2 y⎡⎣ ⎤⎦ 0

loge 2

= π
2 e2loge 2 − e0( )

= π
2 4 −1( ) = 3π

2  units3

	 Example 8	
	� Find the volume generated by rotating about the x-axis the area beneath the curve y = 1

x
 between x = 4  

and x = 9.

Solution
Volume = π y2 dx

4

9

∫     where y = 1
x

= π 1
x dx4

9

∫
= π loge x[ ]4

9

= π loge 9 − loge 4( )
= π loge 2.25
≈ 2.548

EXPLORING FURTHER

Solids of revolution
Use graphing software to graph and calculate the volume of solids of revolution.

Volume by rotating the region between two curves 
When the region bounded by two curves y = f (x) and y = g (x) is rotated 
about the x-axis, the volume of the solid of revolution formed is given by 

V f x g x dx( ) ( )
a

b 2 2∫π ( )[ ] [ ]= − , where a and b are the abscissae of the points 

of intersection of the two curves, a < b and f (x) ≥ g (x).

If the region is rotated about the y-axis, the equation of each curve must first 
be written as a function of y, i.e. x = f −1(y) and x = g −1(y), and the ordinates 
of the points of intersection used, namely c and d, as shown in the diagram.

The volume of the solid of revolution is given by V f y g y dy( ) ( )
c

d
1 2 1 2

∫π ( )=   −  
− − .

O 4 9 x

y

x

y

d

c

a

y = g(x)

y = f(x)

bO
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	 Example 9	
	� The curve y = x3 − 3x2 + 3x and the line y = x intersect at (0, 0), A and B.

(a)	 Find the coordinates of A and B.
(b)	 Calculate the shaded area between the curves.
(c)	� The shaded region between the curves from O to A is rotated about the  

x-axis. Calculate the exact volume of the solid formed.
(d)	� The shaded region between the curves from A to B is rotated about the  

x-axis. Calculate the exact volume of the solid formed.
(e)	� Hence find the volume of the solid formed when the shaded region between the curves from  

O to B is rotated about the x-axis.

Solution
(a)	    x3 − 3x2 + 3x = x 

   x3 − 3x2 + 2x = 0 
  x(x2 − 3x + 2) = 0 
x(x − 1)(x − 2) = 0 
                       x = 0, 1, 2 
                       y = 0, 1, 2 
A(1, 1) and B(2, 2)

(b)	 Area = x x x x dx x x x x dx3 3 3 33 2

0

1
3 2

1

2

∫ ∫ ( )( ) ( )− + − + − − +  

= x x x dx x x x dx3 2 3 23 2

0

1
3 2

1

2

∫ ∫( ) ( )− + + − + −  

= x x x x x x4 4
4

3 2

0

1 4
3 2

1

2

− +





+ − + −





 

= 1
4 1 1 0 4 8 4 1

4 1 1( )− + − + − + − − − + −



  

= 12  unit2

(c)	 Volume from O to A = x x x x dx3 33 2 2 2

0

1

∫π { }( )− + −  

= x x x x x dx6 15 18 86 5 4 3 2

0

1

∫π ( )− + − +  

= x x x x x
7 3 9

2
8

3
7

6 5
4 3

0

1

π − + − +





 

= 1
7 1 3 9

2
8
3 0π ( )− + − + −  

= 13
42

π  units3

(d)	 Volume from A to B = x x x x dx3 32 3 2 2

1

2

∫π { }( )− − +  

= x x x x x dx6 15 18 86 5 4 3 2

1

2

∫π ( )− − + − +  

= x x x x x
7 3 9

2
8

3
7

6 5
4 3

1

2

π− − + − +





 

= 128
7 64 96 72 64

3
1
7 1 3 9

2
8
3π− − + − + − − + − +









  

= 29
42

π  units3

(e)	 Volume from O to B = 13
42

29
42

π π+  = π units3

x

y

A
y = x3 – 3x2 + 3x

y = xB

O
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	 EXERCISE 11.1  VOLUMES OF SOLIDS OF REVOLUTION�

	 1	 Find the volume of the solid of revolution formed by rotating about the x-axis the arc of the parabola  
y = x2 between x = 0 and x = 3.

	 2	 Find the volume of the solid of revolution formed by rotating about the x-axis the line y = 2x between  
x = 0 and x = 4.

	 3	 A cone is formed by rotating about the x-axis a segment of the line y = 3x between x = 0 and x = 4. The definite 
integral used to calculate the volume of this solid is: 

A	 9x2 dx
0

4

Ú 		  B	 p 3x2 dx
0

4

Ú 		  C	 3x2 dx
0

4

Ú 		  D	 p 9x2 dx
0

4

Ú
	 4	 (a)	 Find the equation of the line passing through the points (1, 0) and (3, 4).

(b)	� A cone is formed by rotating about the x-axis the segment of the line joining  
the points (1, 0) and (3, 4). Calculate the volume of the cone.

	 5	 The semicircle y = 9 − x2  is rotated about the x-axis. Calculate the volume of the sphere generated.

	 6	 The region bounded by the parabola y = x − x2 and the x-axis is rotated about  
the x-axis. Find the volume of the solid formed.

	 7	 Find the volume of the solid formed when the region bounded by the parabola y = 1 − x2 and the x-axis  
is rotated about:	 (a)	 the x-axis			   (b)	 the y-axis.

	 8	 The region bounded by the parabola y = (x − 2)2 and the coordinate axes is rotated about the x-axis. Find the 
volume of the solid generated.

	 9	 Find the volume of the solid generated when the segment of the line joining the points (0, 3) and (6, 0) is 
rotated about:	 (a)	 the x-axis			   (b)	 the y-axis.

	 10	 A rugby ball has a volume approximately the same as the volume generated  
by rotating the ellipse 9x2 + 16y2 = 144 about the x-axis. Find its volume.

	 11	 Find the volume of the solid formed when the region bounded by the parabola y = 9 − x2 and the coordinate 
axes is rotated about:	 (a)	 the x-axis	 (b)	 the y-axis.

	 12	 (a)	 Find the equation of the line through the points (3, 0) and (4, 10).
(b)	� A drinking glass has the shape of a truncated cone. The internal radii of the base and the top are 3 cm and 

4 cm respectively and its depth is 10 cm. If the base of the glass sits on the x-axis, use integration to find its 
capacity.

(c)	 If the glass is filled with water to a depth of 5 cm, find the volume of water in the glass.

	 13	 A hemispherical bowl of radius a units is filled with water to a depth of a2  units. Use integration to find the 
volume of the water.

3O

y

x1

(3, 4)

1O

y

y = x – x2

x

4

3

–3

O–4

y

x

M11_NSM3E_EX1_SB_18307.indd   237 27/8/18   3:27 pm

Sam
ple

 pa
ge

s



238 New Senior Mathematics Extension 1 for Years 11 & 12 

YEAR 12

	 14	 Find the volume of the solid formed when the region bounded by the parabola  
y = 4 − x2 and the line y = 1 is rotated about the y-axis.

	 15	 A solid is formed by rotating about the y-axis the region bounded by the parabola y = x2 − 2 and the x-axis. 
Indicate whether each statement below is a correct or incorrect step in calculating the volume of the solid formed.

(a)	 V = p x2 - 2( )2
dx

0

2

Ú 	 (b)	 V = π (y + 2)dy
−2

0

∫ 	 (c)	 V = π y2

2 + 2y
⎡

⎣
⎢

⎤

⎦
⎥
−2

0

	 (d)	 V = 2π

	 16	 Use integration to find the volume of the sphere generated when the circle x2 + y2 = 16 is rotated about 
the x-axis.

	 17	 The area under the curve y = 2x 1− x2  between x = 0 and x = 1 is rotated about the x-axis. Using the 
trapezoidal rule with four subintervals, find an approximation for the volume of the solid correct to  
two decimal places.

	 18	 Find the volume of the solid formed when the ellipse 4x2 + y2 = 16 is rotated about:
(a)	 the x-axis		  (b)	 the y-axis.

	 19	 A region is bounded by the curve x + y = 2 and the coordinate axes.
(a)	 Calculate the area of the region.
(b)	� Calculate the volume of the solid generated when the region is rotated about the 

x-axis.
(c)	� Calculate the volume of the solid generated when the region is rotated about the 

y-axis.

	 20	 The region bounded by the curve xy = 1, the x-axis and the lines x = 1 and x = a, for a > 1, is rotated about the 
x-axis. Find V, the volume generated. Hence find lim

a→∞
V.

	 21	 The area bounded by the parabola y = 2x − x2, the y-axis and the line y = 1 is rotated about the x-axis. Find the 
volume generated.

	 22	 Find the volume of the solid generated by rotating the region bounded by the parabola y = 1 − x2 and the lines 
x = 1, y = 1 about:	 (a)	 the x-axis	 (b)	 the y-axis.

	 23	 Find the volume of the cone formed by rotating the segment of the line x + 2y = 4 that is cut off by the axes 
about:	 (a)	 the x-axis	 (b)	 the y-axis.

	 24	 Use the trapezoidal rule with five function values to estimate the volume of the solid formed by rotating the 
curve y = 1

1+ x2  about the x-axis between x = −2 and x = 2.

	 25	 The area under the curve y = e−x between x = 0 and x = 1 is rotated about the x-axis. Find the volume of the 
solid of revolution.

	 26	 Find the volume generated when the curve y = ex, 0.5 ≤ x ≤ 1.5, is rotated about the x-axis.

	 27	 Find the volume generated when the curve y = e−0.5x, −2 ≤ x ≤ 2, is rotated about the x-axis.

2

4

1

O–2

y

x

2

4

O

y

x

4

4

O

y

x
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	 28	 Find the volume generated when the curve y = ex + e−x between x = −1 and x = 1 is rotated about the x-axis.

	 29	 (a)	 Find the area of the region bounded by the curve y = e−x, the coordinate axes and the line x = a, a > 0.
(b)	 Find the limit of this area as a→∞.
(c)	� Find the volume of the solid generated by rotating the region in (a) about the x-axis and find the limit of 

this volume as a→∞.

	 30	 Find the volume of the solid generated by rotating about the x-axis the region enclosed by the curve  
y2 = 6

x , the x-axis and the ordinates x = 1 and x = 3.

	 31	 Find the volume of the solid generated by rotating about the x-axis the area beneath the curve y = 1
x − 2

 
between x = 6 and x = 11.

	 32	 (a)	 Given a > 1, sketch the curve y = loge x for 1 ≤ x ≤ a. Find the area enclosed by the curve and the lines 
y = 0 and x = a. 

(b)	� The region enclosed by the curve y = loge x and the lines x = 0, y = loge a and y = 0 is rotated about the 
y-axis to form a solid of revolution. Find the volume of this solid.

	 33	 Sketch the curve y = 1
x2  for values of x from x = 12  to x = 1. This part of the curve is rotated about the y-axis to 

form a solid of revolution. Find its volume.

	 34	 Sketch the curve y = 1
4 + x

 from x = 0 to x = 5. The region enclosed by the curve, the x-axis and the 

ordinates x = 0 and x = 5 is rotated about the x-axis. Find the volume of the solid formed.

	 35	 The region enclosed by the curve y = 2
x − 7

 and the x-axis between x = 8 and x = 10 is rotated about the 

x-axis. Find the volume of the solid formed.

	 36	 The region enclosed by the curve y = x +1
x  and the x-axis between x = 3 and x = 5 is rotated about the x-axis. 

Find the volume of the solid formed.

	 37	 (a)	 Sketch the region bounded by the curves y = 2(x2 − 1) and y = 1 − x2.
(b)	 Calculate the area of the shaded region.
(c)	� The region bounded by the y-axis and the curves y = 2(x2 − 1) and y = 1 − x2 for x ≥ 0, is rotated about the 

y-axis. Calculate the volume of the solid of revolution generated.

	 38	 The curve y x2 cos 4
π( )=  meets the line y = x at the point A(1, 1), as shown in the diagram.

(a)	 Find the exact value of the shaded area.
(b)	� The shaded area is rotated about the x-axis. Calculate the volume of the 

solid of revolution formed.
(c)	� The shaded area is rotated about the y-axis. Write the integral for 

this volume.
(d)	� By using a combination of exact integration and the trapezoidal rule, 

as appropriate, calculate the volume of the solid in (c).

	 39	 In the diagram on the right, the parabola y = 4x − x2 and the line y = 2x intersect  
at the points (0, 0) and (2, 4).
(a)	 Calculate the area of the region between the curves.
(b)	� The shaded region between the curves is rotated about the x-axis to form a solid 

of revolution. Calculate the exact volume of this solid.
(c)	� The shaded region between the curves is rotated about the y-axis to form a solid 

of revolution. Calculate the exact volume of this solid.

1 2 x

y

1

2

A(1, 1)

y = x

O

2√

4 )( xπy = 2 cos√ —

x

y

(0, 4)(0, 0)

(2, 4)

y = 4x – x2 

y = 2x

O
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	 40	 (a)	 Sketch the region bounded by the curve y x1= +  and the lines y = 1 and x = 4.
(b)	 Calculate the area of this region.
(c)	 This region is rotated around the x-axis to form a solid. Calculate the volume of this solid.
(d)	 Calculate the volume of the solid formed if this region is rotated about the y-axis.

	 41	 (a)	 On the same diagram sketch the graphs of x2 + y2 = 1 for −1 ≤ x ≤ 0 and x y4 1
2

2+ =  for 0 ≤ x ≤ 2.

(b)	� An egg is modelled by rotating about the x-axis the curves x2 + y2 = 1 for −1 ≤ x ≤ 0 and x y4 1
2

2+ =  
for 0 ≤ x ≤ 2 to form a solid of revolution. Find the exact value of the volume of the egg.

	 42	 A bowl is formed by rotating the curve y = 8loge (x − 1) about the y-axis for 0 ≤ y ≤ 4.
(a)	� Calculate the volume of the bowl (capacity), giving your 

answer correct to one decimal place.
(b)	� This bowl is to be moulded out of plastic with vertical 

sides and a solid base 0.5 units thick. The cross-section 
of the bowl is shown in the diagram, right. Calculate the 
volume of plastic used to make the bowl.

	 11.2  INDEFINITE INTEGRALS AND SUBSTITUTION	

Some integrals can only be solved using particular substitutions for the variables. In this Mathematics Extension 1 
course, any substitutions needed to find an integral are given. 
Integration using a substitution can be considered as the converse of the method of differentiating a composite 
function—it’s like using the chain rule backwards.
The aim of a substitution is to transform an integral into one that involves a standard result,  
e.g. un du∫ = 1

n+1u
n +1 +C. Variable substitution works as follows:

Let y = f (u)du∫ 	 where u = g(x)

∴ dy
du = f (u)

But dy
dx = dy

du ×
du
dx

= f (u)× du
dx

∴ y = f (u)× du
dx dx∫

f (u) ¥ du
dx dxÚ = f (u)duÚ

This ‘backwards’ form of the chain rule is convenient when the substitution of u = g(x) allows a function to be 
expressed as the product of dudx  and a function of u. For example:

•	 If f (x) = 2x2(x3 − 1)4 then you can substitute u = x3 − 1. As dudx = 3x 2, you can write 2x2 as 23 ¥ 3x2, so that  

f (x) is written:  f (x) = 2
3 (x3 - 1)4 ¥ (3x2 )  

	 = 2
3u

4 du
dx where u = x3 - 1

•	 If f (x) = x 1 + x2 , you can see that 2x is the derivative of 1 + x2, so if you make the substitution u = 1 + x2 

and write x as 12(2x), then f (x) = 1
2u

1
2 du
dx   where u = 1 + x2 and dudx = 2x .

1

1 2 3 x

y

2

3

4

–1
O–1–2–3

y = 8loge (–x – 1) y = 8loge (x – 1)
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•	 If f (x) = x +1
(x 2 + 2x)3 , you can see that 2x + 2 is the derivative of x2 + 2x, so if you make the substitution  

u = x2 + 2x and write x + 1 as 12 (2x + 2), then f (x) = 1
2u

−3 du
dx .

•	 If f (x) = x 1 - x , then you can make the substitution u = 1 − x. As x = 1 − u, dudx = −1, so:

			 

f (x)= −x 1− x × (−1)

= −(1−u)u
1
2 × du

dx

= − u
1
2 −u

3
2( ) × du

dx

= u
3
2 −u

1
2( ) × du

dx

= f (u)dudx

	 Example 10	
	 Find:  (a)	 3x2 x3 - 1( )4

dxÚ   using the substitution u = x3 − 1

	 (b)	 x 1 + x2 dxÚ   using the substitution u = 1 + x2

	 (c)	 x + 1
x2 + 2x( )3 dxÚ   using the substitution u = x2 + 2x.

Solution

(a)	   u = x3 − 1, dudx = 3x2

	

3x2 x3 −1( )4
dx∫ = u4 × du

dx dx∫
= u4 du∫
= 1

5u
5 +C

= 1
5 x3 −1( )5 +C

(b)	 u = 1 + x2, dudx = 2x

	

x 1 + x2 dxÚ = 1
2 2x 1 + x2 dxÚ

= 1
2 u

1
2 ¥ du

dx dxÚ
= 1

2 u
1
2 duÚ

= 1
2 ¥ 2

3u
3
2 +C

= 1
3 1 + x2( )

3
2 +C

(c)	 u = x2 + 2x, dudx = 2x + 2

	   

x +1
x2 + 2x( )3 dx∫ = 1

2 (2x + 2) x2 + 2x( )−3
dx∫

= 1
2 u−3 × du

dx dx∫
= 1

2 u−3 du∫
= 1

2 × 1
−2( )u−2 +C

= −1
4 x2 + 2x( )2 +C

A quick way to check your answer is to differentiate it to see that it gives the integrand.
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YEAR 12

	 Example 11	
	 Find:  (a)	 x 1 - x dxÚ  using the substitution u = 1 − x	 (b)	 t

1 + t
dtÚ  using the substitution u = 1 + t

	 (c)	 3x - 5( )4 dxÚ  using the substitution u = 3x − 5.

Solution
(a)	  u = 1 − x, dudx = −1, x = 1 − u

	

x 1− x dx∫ = (1− u)u
1
2 × du

dx dx∫
= − u

1
2 − u

3
2⎛

⎝⎜
⎞
⎠⎟ (−1)dx∫

= − u
1
2 − u

3
2⎛

⎝⎜
⎞
⎠⎟ du∫    (note that du = ( −1)dx)

= − 2
3u

3
2 − 2

5 u
5
2⎛

⎝⎜
⎞
⎠⎟ +C

= 2
5 (1− x)

5
2 − 2

3 (1− x)
3
2 +C

(b)	 u = 1 + t, dudt = 1, t = u − 1

	    

t
1+ t

dt∫ = u −1
u

× du
dt × dt∫

= u
1
2 − u−1

2⎛
⎝⎜

⎞
⎠⎟ (1)dt∫

= u
1
2 − u−1

2⎛
⎝⎜

⎞
⎠⎟ du∫    (note that du = (1)dt)

= 2
3u

3
2 − 2u

1
2 +C

= 2
3 (1+ t)

3
2 − 2(1+ t)

1
2 +C

(c)	 u = 3x − 5, dudx = 3

	

3x − 5( )4 dx∫ = 1
3 3 3x − 5( )4 dx∫

= 1
3 u4× du

dx dx∫
= 1

3 u4 du∫
= 1

3 × 1
5u

5 +C

= 1
15 (3x − 5)5 +C

	 EXERCISE 11.2  INDEFINITE INTEGRALS AND SUBSTITUTION	

	 1	 Find:	 (a)	 2x x2 - 1( )4
dxÚ  using the substitution u = x2 − 1

				    (b)	 3x2 x3 + 4( )3
dxÚ  using the substitution u = x3 + 4

				    (c)	 x2 x3 + 1dxÚ  using the substitution u = x3 + 1.

	 2	 Find:	 (a)	 (2t + 1)3 dtÚ  using the substitution u = 2t + 1

				    (b)	 2x
x2 - 4

dxÚ  using the substitution u = x2 − 4

				    (c)	 2x + 1( ) x2 + x + 2( )5
dxÚ  using the substitution u = x2 + x + 2.

	 3	 Using u = 2x + 3, dx
(2x + 3)3Ú =… …

A	 4(2x + 3)4 + C		  B	 1
4(2x + 3)4 +C 		  C	 −4(2x + 3)2 + C		  D	 −1

4(2x + 3)2 +C

M11_NSM3E_EX1_SB_18307.indd   242 27/8/18   3:27 pm

Sam
ple

 pa
ge

s



243 Chapter 11  Applications of calculus

YEAR 12

	 4	 Find:	 (a)	 (3 - 2x)6 dxÚ  using the substitution u = 3 − 2x

				    (b)	 3x + 1
3x2 + 2x + 5( )2 dxÚ  using the substitution u = 3x2 + 2x + 5

				    (c)	 x2 - 2x( ) x3 - 3x2 + 1( )4
dxÚ  using the substitution u = x3 − 3x2 + 1.

	 5	 Find:	 (a)	 3x2 x3 + 1( )4
dxÚ  using the substitution u = x3 + 1

				    (b)	 t
1 - t2

dtÚ  using the substitution u = 1 − t2

				    (c)	 (3x - 5)
2
3 dxÚ  using the substitution u = 3x − 5.

	 6	 Find:	 (a)	 2t 1 - t2 dtÚ  using the substitution u = 1 − t2

				    (b)	 x a2 - x2 dxÚ  using the substitution u = a2 − x2

				    (c)	 z z 2 + 13 dzÚ  using the substitution u = z2 + 1.

	 7	 Find:	 (a)	 y y + 1dyÚ  using the substitution u = y + 1

				    (b)	 x
(x - 1)3 dxÚ  using the substitution u = x − 1

				    (c)	 x
2x - 1

dxÚ  using the substitution u = 2x − 1.

	 8	 (a)	 Find x2 1 + x3 dxÚ  using the substitution u = 1 + x3.

(b)	 Find x2 1 + x3 dxÚ  using the substitution u = x3.

(c)	 Why is the substitution in (a) easier to use than the substitution in (b)?

	 9	
dy
dx = x x2 - 4  and y = 2 at x = 5 . Use the substitution u = x2 − 4 to find y in terms of x.

	 10	 If ¢f (x) = 3x
x2 + 1

 for all x and f(0) = 2, use the substitution u = x2 + 1 to find f(x).

	 11	 dxdt = t - 1
t2 - 2t + 4

 and x = 10 when t = 0. Use the substitution u = t2 − 2t + 4 to find x in terms of t.

	 12	 Given that drdq = 3
(1 - r)4  and r(0) = 0, use the substitution u = 1 − r to find r in terms of θ .

	 13	 At any point where x > 1
2, the gradient of a curve is given by dydx = 2x - 1. If the point (2.5, 9) is on the curve, 

use the substitution u = 2x − 1 to find the equation of the curve.

	 14	 Given that dtdx = 1
2(4 - x)2  and x = 0 when t = 0, use the substitution u = 4 − x to find x in terms of t.

	 11.3  DEFINITE INTEGRALS AND SUBSTITUTION	

When using a substitution to evaluate a definite integral you must take care with the limits of integration. The 
original limits are for values for x, but after substitution the variable will become u (or some other new variable), so 
the limits similarly need to become values for u (or the other new variable). To do this, substitute the limits into the 
change-of-variable equation to find the limits for the new variable.
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YEAR 12

	 Example 12	
	 Evaluate:  (a)	 2x x2 −1 dx

1

2

∫  using the substitution u = x2 − 1

	 (b)	 x 4 − x dx
−5

3

∫  using the substitution u = 4 − x

	 (c)	 x2 x3+1( )4
dx

0

1

∫  using the substitution u = x3 + 1.

Solution
(a)	 u = x2 − 1, dudx = 2x

	   Limits:	 for x = 1, u = 12 − 1 = 0 
			   for x = 2, u = 22 − 1 = 3

	

2x x 2 −1dx
1

2

∫ = u × du
dx

dx
0

3

∫
= u

1
2 du

0

3

∫
= 2

3u
3
2⎡

⎣⎢
⎤
⎦⎥0

3

= 2
3 3

3
2 −0⎛

⎝
⎞
⎠ = 2 3

(c)	 u = x3 + 1, dudx = 3x2

	 Limits:	 for x = 0, u = 1 
			   for x = 1, u = 13 + 1 = 2

x 2 x3 +1( )4
dx

0

1

∫ = 1
3 u4 × du

dx dx1

2

∫
= 1

3 u4 du
1

2

∫
= 1

3
1
5u

5⎡
⎣

⎤
⎦1

2

= 1
15 u5⎡⎣ ⎤⎦1

2

= 1
15(32−1)= 31

15

(b)	 u = 4 − x, dudx = −1

	 x = 4 − u, so x 4 - x = (4 - u) u
	 or	 −x 4 − x = (u − 4) u
	 Limits:	 for x = −5, u = 4 + 5 = 9 
		  for x = 3, u = 4 − 3 = 1

x 4 − x dx
−5

3

∫ = (u − 4) u × du
dx dx9

1

∫
= u

3
2 − 4u

1
2⎛

⎝⎜
⎞
⎠⎟ du9

1

∫
= 2

5 u
5
2 − 4 × 2

3u
3
2⎡

⎣⎢
⎤
⎦⎥9

1

= 2
5 − 8

3( )− 2
5 × 9

5
2 − 8

3 × 9
3
2⎛

⎝⎜
⎞
⎠⎟

= 2
5 − 8

3 − 2
5 × 35 + 8

3 × 33

= − 412
15

Useful result

f (x)dx
a

b

∫ = − f (x)dx
b

a

∫   If you reverse the limits of integration, you change the sign of the integral.

In Example 11(b) the integral u
3
2 − 4u

1
2⎛

⎝⎜
⎞
⎠⎟ du9

1

∫  could have been written as − u
3
2 − 4u

1
2⎛

⎝⎜
⎞
⎠⎟ du1

9

∫  . 

Check that this integral gives the same answer.

	 EXERCISE 11.3  DEFINITE INTEGRALS AND SUBSTITUTION	

	 1	 Evaluate:		 (a)	 x 1− x2 dx
0

1

∫  using the substitution u = 1 − x2

					     (b)	 x 2 − x dx
−1

2

∫  using the substitution u = 2 − x

					     (c)	 2x
x2 +1

dx
0

2

∫  using the substitution u = x2 + 1.
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