Number

BIG IDEA:
Numbers tell us how many and how much.

Conceptual Thread:
$\left.\begin{array}{l|l|} & \begin{array}{l}\text { Says the } \\ \text { number name } \\ \text { sequence } \\ \text { starting with 1 }\end{array} \\ \text { and counting } \\ \text { forward. }\end{array}\right\}$ sequence backward from Knows that the last counting many" objects cardinality).
(i.e., one-to-one
correspondence tagging).

Says the number name sequence backward from numbers to 10 . Knows that the	Says the number name sequence forward through the teen numbers.	Says the number name sequences forward and backward from a given number.
last counting word tells "how many" objects in a set (i.e., cardinality).	Creates a set to match a verbal number or written numeral.	Knows that rearranging objects in a set does not change the quantity (i.e., conservation of number).

APPLYING THE PRINCIPLES OF COUNTING

Uses number

 patterns to bridge tens when counting forward and backward (e.g., 39, 40, 41).Fluently skip-counts by factors of 10 (e.g., 2, 5, 10) and multiples of 10 from any given number.

Uses number patterns to bridge hundreds when counting forward an (e.g., 399, 4 401).
luently skip-counts by factors of 100 (e.9., 20, 25, 50 and multiples of 100 from any given number.

Conceptual Thread:

RECOGNIZING AND WRITING NUMERALS

Names, writes, and matches numerals to numbers and quantities to 10 .

Names, writes, and matches two-digit numerals to quantities.

Names, writes, and matches three-digit numerals to quantities.

Conceptual Thread:

RECOGNIZING QUANTITIES BY SUBITIZING

Instantly recognizes quantities to 5 (i.e., perceptual subitizing).

Uses grouping (e.g., arrays of dots) to determine quantity without counting by ones (i.e., conceptual subitizing).

BIG IDEA:
Numbers are related in many
ways.

Conceptual Thread:
COMPARING AND ORDERING QUANTITIES (MULTITUDE OR MAGNITUDE)

BIG IDEA:
Quantities and numbers can be grouped by or partitioned into equal-sized units.
Conceptual Thread:
UNITIZING QUANTITIES INTO ONES, TENS, AND HUNDREDS (PLACE-VALUE CONCEPTS)

INDICATORS	Conceptual Thread:	Composes teen numbers from units of ten and ones and decomposes teen numbers into units of ten with leftover ones.	Bundles quantities into tens and ones.	Writes, reads, composes, and decomposes two-digit numbers as units of tens and leftover ones.	Determines 10 more/less than a given number without counting.			Writes, reads, composes and decomposes three-digit numbers using ones, tens, and hundreds.		
		UNITIZING QUANTITIES AND COMPARING UNITS TO THE WHOLE								
			Partitions into and skip-counts by equal-sized units and recognizes that the results will be the same when counted by ones (e.g., counting a set by 1 s or by 5 s gives the same result).	Recognizes that, for a given quantity, increasing the number of sets decreases the number of objects in each set.	Recognizes and describes equal-sized sets as units within a larger set (doubling or tripling).	Keeps track of how many sets and how many in each set (e.g., 5 sets of 3 objects).	Recognizes numb repeated units (e counting by $2 \mathrm{~s}, 5$	patterns in when skips).	Partitions whole units and identifi units and the size each unit.	equal-sized the number of or quantity in,
Conceptual Thread:		PARTITIONING QUANTITIES TO FORM FRACTIONS								
		Visually compares fraction sizes and names fractional amounts informally (e.g., halves).	Partitions wholes into equal-sized parts to make fair shares or equal groups.	Partitions wholes (e.g., intervals, sets) into equal parts and names the unit fractions.	Relates the size of parts to the number of equal parts in a whole (e.g., a whole cut into 2 equal pieces has larger parts than a whole cut into 3 equal pieces).	Compares unit fractions to determine relative size.	Counts by unit fractions (e.g., counting by $\frac{1}{4}$: $\left.\frac{1}{4}, \frac{2}{4}, \frac{3}{4}\right)$. Uses fraction symbols to name fractional quantities.	Uses the same unit fraction to build other fractions (e.g., $\frac{1}{3}$ and $\frac{1}{3}$ make $\frac{2}{3}$).	Compares related fractions (e.g., same numerator, same denominator, unit fractions, familiar fractions) to determine more/less or equal.	Partitions a number line (from 0 to 1) into equal parts and names the parts using fractions.

BIG IDEA:
Quantities and numbers can be added and subtracted to determine how many or how much.

Addition and subtraction capitalize on the base-ten number system to make computation more efficient than counting.

Conceptual Thread:
DEVELOPING CONCEPTUAL MEANING OF ADDITION AND SUBTRACTION

Models add-to and take-from
situations with quantities to 10 .
Uses symbols
and equations
to represent
addition and
subtraction addition and subtraction
situations. situations.

Models and symbolizes addition and subtraction problem types (i.e., join, separate, partcompare).

Relates addition and subtraction as inverse operations.

Uses properties of addition and subtraction to solve problems e.g., adding or subtracting 0 , commutativity of addition).

DEVELOPING FLUENCY OF ADDITION AND SUBTRACTION COMPUTATION

Fluently adds

 and subtrawithin 5.

Fluently adds and subtracts with quantities to 10 .
Fluently recalls complements to 10 (e.g., $6+4 ; 7+3$).

Extends known sums and sums and
differences to differences
solve other equations (e.g., using $5+5$ to add $5+6$).

Fluently adds and subtracts with quantitie to 20 .

Develops
efficient menta efficient mental
strategies and algorithms to solve equations with multi-digit numbers. Estimates sums and differences of multi-digit numbers.

Number

Conceptual Thread:

BIG IDEA:
Quantities and numbers can be grouped by, and partitioned into, units to determine how many or how much.

PURPOSE:

Multiplicative thinking through the operations of

DEVELOPING CONCEPTUAL MEANING OF MULTIPLICATION AND DIVISION

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Models and solves equal sharing } \\
\text { problems to 10. }\end{array} & \text { Groups objects in } 2 s, 5 s, \text { and } 10 s . & \begin{array}{l}\text { Models and } \\
\text { solves equal } \\
\text { sharing }\end{array} & \begin{array}{l}\text { Models and } \\
\text { solves } \\
\text { equal grouping }\end{array} & \begin{array}{l}\text { Models equal } \\
\text { groups and uses }\end{array}
$$

problems

multiplication

symbol (x)\end{array}\right\}\)| to 100. |
| :--- |
| to symbolize |
| operation. |

DEVELOPING FLUENCY FOR MULTIPLICATION AND DIVISION COMPUTATION

$$
\begin{aligned}
& \text { Models and } \\
& \text { symbolizes } \\
& \text { single-digit } \\
& \text { multiplication } \\
& \text { problems } \\
& \text { involving equal } \\
& \text { groups or } \\
& \text { measures } \\
& \text { (i.e., equal } \\
& \text { jumps on a } \\
& \text { number line), } \\
& \text { and relates } \\
& \text { them to } \\
& \text { addition. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Uses properties } \\
& \text { of multiplication } \\
& \text { and division } \\
& \text { to solve } \\
& \text { problems (e.g., } \\
& \text { multitiying and } \\
& \text { dividing by } 1 \text {, } \\
& \text { commutativity of } \\
& \text { multiplication). }
\end{aligned}
$$

Models and symbolizes equal sharing and grouping division problems, and them to subtraction
Begins to mode single-digit and multi-digit multiplication
and relater
division
situations.

Patterning and Algebra

Regularity and repetition form patterns that can be generalized and predicted mathematically.

Conceptual Thread:
IDENTIFYING, SORTING, AND CLASSIFYING ATTRIBUTES AND PATTERNS MATHEMATICALLY (E.G., NUMBER OF SIDES, SHAPE, SIZE)

Identifies \quad Sorts a set variations of an attribute (e.g., buttons can

 have 0, 2 , or 4 holes).| Sorts a set | Identifies the | Records and |
| :--- | :--- | :--- |
| of objects in | sorting rule | symbolizes |
| different ways | used to sort | attributes in |
| using a single | sets. | different ways |
| attribute (e.g., | | (e.g., using |
| buttons sorted | | drawings, |
| by the number | | |

Sorts and classifies objects with
multiple attributes (e.g., big red 3 -sided shape).

$A B B$).

Sorts a set of objects based on two attributes.

Conceptual Thread:

IDENTIFYING, REPRODUCING, EXTENDING, AND CREATING PATTERNS THAT REPEAT

Identifies the repeating unit (core) of a pattern.	Predicts missing element(s) and corrects errors in repeating patterns. Recognizes similarities and differences between patterns.	Reproduces, creates, and extends repeating patterns based on copies of the repeating unit (core).	Represents the same pattern in different ways (i.e., translating to different symbols, objects, sounds, actions).	Compares repeating patterns and describes how they are alike and different.	Recognizes, extends, and creates repeating patterns based on two or more attributes (e.g., shape and orientation).	Identifies the repeating unit of patterns in multiple forms (e.g., circular, 2-D, 3-D).

REPRESENTING AND GENERALIZING INCREASING/DECREASING PATTERNS

Identifies	Identifies
and extends	and extends
non-numeric	familiar number
increasing/	patterns
decreasing	and makes
patterns	connections
(e.g., jump-clap;	to addition
jump-clap-clap;	(e.g., skip-
jump-clap-clap-	counting by 2s,
clap, etc.).	$55,10 s$).

Identifies,
reproduces,
and extends
increasing/
decreasing
patterns
concretely,
pictorially, and
numerically
using repeated
addition or
subtraction.

Extends number	Creates an
patterns and	increasing/
finds missing	decreasing
elements	pattern
(e.g.,., 1,3,5,-,	(concretely,
$9, \ldots).$.	pictorially, and/
	or numerically)
	and explains the
	pattern rule.

Represents one-step addition and subtraction functions with $\left.\xrightarrow{\text { nout }} \longrightarrow+{ }^{\text {Output }}\right)$.

PURPOSE:

F-3
Algebraic tools, such as variables, are efficient ways to represent, generalize, and analyze number patterns and properties.

Conceptual Thread:
UNDERSTANDING EQUALITY AND INEQUALITY, BUILDING ON GENERALIZED PROPERTIES OF NUMBERS AND OPERATIONS

	Compares sets to determine morelless or equal.

Models and	Writes
describes	equivalent
equality	addition and
(balance; the	subtraction
same as) and	equations in
inequality	different forms
(imbalance; not	(e.g., $8=5+3 ;$
the same as).	$3+5=8$).

Records different expressions of the same quantity as equalities (e.g., $2+4$ = $5+1$).	Decomposes and combines numbers in equations to make them easier to solve (e.g., $8+5$ = $3+5+5)$.

addition and subtraction as inverse as inverse

 operations.Explores properties of addition and subtraction (e.g., adding or subtracting 0 , of addition).

Investigates
multiplication and division as inverse operations. Explores properties of multiplication and division (e.g., multiplying and
dividing by 1 , dividing by 1 ,
commutativity multiplication).

Justifies equivalence/ non-equivalence of expressions using relational thinking (e.g., $25+88-0$
$=88+25$).

USING SYMBOLS, UNKNOWNS, AND VARIABLES TO REPRESENT MATHEMATICAL RELATIONS

Uses the equal (=) symbol in equations and knows its meaning (i.e., equivalent; is the same as).	Understands and uses the equal (=) and not equal () symbols when comparing expressions.	Uses placeholders (e.g., \square) for unknown values in equations.	Solves for an unknown value in a one-step addition and subtraction problem (e.g., $n+5=15$).

Understands and uses the "areater than" (>) and "less than" (<) symbols when comparing expressions.
olves for an unknown in unknown in multiplication problem
(e.g., $3 \times n=12$).

Uses variables (i.e., letters (i.e., lett
or icons) to describe relations (e.g., $10=\square+0$).

BIG IDEA:

Many things in our world (e.g., objects, spaces, events) have attributes that can be measured

Conceptual Thread:
UNDERSTANDING ATTRIBUTES THAT CAN BE MEASURED

Explores measurement of visible attributes (e.g., length, capacity, area) and non-visible attributes (e.g., mass, time, temperature).
Uses language to describe attributes (e.g., long, tall, short, wide, heavy).

INDICATORS

Understands that some things have more than one attribute that can be measured (e.g., an object can have both length and mass).
Understands conservation of length (e.g., a string is the same length when straight and not straight), capacity (e.g., two differently shaped containers may hold the same amount), and area (e.g., two surfaces of different shapes can have the same area).
Extends understanding of length to other linear measurements (e.g., height, width, distance around).

Directly compares and orders objects by length (e.g., by aligning ends), mass (e.g., using a balance scale), and area (e.g., by covering).
compares objects indirectly by using an intermediary object.
Uses relative attributes to compare and order (e.g., longer/longest, taller/tallest, shorter/shortest).

Compares and orders objects in more than one way using different measurable attributes.

BIG IDEA:

Assigning a unit to a continuous attribute allows us to measure and make comparisons.

PURPOSE:

F-3
Measuring with units is a way we can count and compare "how much" based on continuous attributes that are not immediately countable.

Conceptual Thread:

SELECTING AND USING NON-STANDARD UNITS TO ESTIMATE, MEASURE, AND MAKE COMPARISONS

ses relative language to describe measures (e.g., close/far, tall, taller, tallest).
Understands that units must be
the same for measurements to be meaningful (e.g., must use same sized cubes to measure a desk).
Understands that there should be no gaps or overlaps when measuring.

Uses whole number measures to estimate, measure, and compare (e.g., this book is 8 cubes long and my pencil is 5 cubes long)
Demonstrates ways to estimate, measure, compare, and order objects by length, area, capacity, and mass with non-standard units by

- using an intermediary object
- iterating a single unit

Selects and uses appropriate non-standard units to estimate, measure, and compare length, area, capacity, and mass.
Uses non-standard units as referents to estimate length (e.g., paper clips), area (e.g., square tiles), mass (e.g., cubes), and capacity (e.g., cups).

Recognizes that smaller units or partial units (e.g., halves) can increase precision.

Conceptual Thread

SELECTING AND USING STANDARD UNITS TO ESTIMATE, MEASURE, AND MAKE COMPARISONS

Uses standard sized objects to measure (e.g., 10 centicube rod).

Demonstrates ways to estimate, measure, compare, and order objects by length, perimeter, area, capacity, and mass with standard units by
using an intermediary object of a known measure
using multiple copies of a unit

- iterating a single unit

Selects and uses appropriate standard units to estimate, measure and compare length, perimeter, area, capacity, mass, and time. Uses the measurement of familiar objects as benchmarks to estimate another measure in standard units (e.g., doorknob is 1 m from the ground; room temperature is $21^{\circ} \mathrm{C}$).

Compares different sized units and Compares different sized units and (e.g., small cubes vs. large cubes to measure length).

Understands the inverse relationship between the size of the unit and the number of units (length, area, capacity, and mass).

Understands that decomposing and rearranging does not change the measure of an object.

Understands relationship of nits of length ($\mathrm{mm}, \mathrm{cm}, \mathrm{m}$) mass (g, kg), capacity (mL, L), and time (e.g., seconds, minutes, hours).

BIG IDEA:

Geometry

2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes.

Conceptual Thread:
INVESTIGATING GEOMETRIC ATTRIBUTES AND PROPERTIES OF 2-D SHAPES AND 3-D SOLIDS

Geometry transformed in many ways and analyzed for change.

PURPOSE:

F-3
Noticing how objects change and stay the same

Conceptual Thread:
EXPLORING SYMMETRY TO ANALYZE 2-D SHAPES AND 3-D SOLIDS

Physically explores symmetry of images by folding, cutting, and matching parts.	Identifies 2-D shapes and 3-D solids that	Constructs and completes 2-D/3-D symmetrical designs.
	have symmetry	
	(limited to	
	line or plane	
	symmetry)	
	(e.g., slicing an	
apple through		
	its core).	

Identifies line(s) of symmetry on regular 2-D shapes.

Compares and classifies 2-D shapes based on lines of symmetry

BIG IDEA:
Objects can be located in space and viewed from multiple perspectives.

PURPOSE:
Representing space and spatial relations from different reference points is necessary for navigation and describing how objects move through space.

Conceptual Thread:

LOCATING AND MAPPING OBJECTS IN SPACE

Uses positional language and gesture to describe locations and movement, and give simple directions (e.g., in,
on, around, right, left).

Uses relative positions to
describe the describe the location and order of objects (e.g., between, beside, next before).

Locates objects in environment (e.g., playground) by interpreting a map.
Provides
instructions
to locate an
object in the
environment
(e.g., listing
instructions to
find a hidden
object in
classroom).

Makes simple maps basiliar settings. the left and 3 squares down).

Conceptual Thread:

VIEWING AND REPRESENTING OBJECTS FROM MULTIPLE PERSPECTIVES

Visualizes and describes the view of a 3-D solid from multiple perspectives (e.g., top/front/side views).

Completes 3-D compositions from 2-D drawings.

Creates simple perspective perspective
drawings of 3-D objects from different views.

BIG IDEA:

Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. uncertainties helps us make sense of our world and make better decisions.

Conceptual Thread:
FORMULATING QUESTIONS TO LEARN ABOUT GROUPS, COLLECTIONS, AND EVENTS BY COLLECTING RELEVANT DATA

Formulates questions that can be addressed through simple surveys (e.g., Should we get bananas for the class picnic?).

INDICATORS
ormulates questions that can be addressed by counting collections (e.g., How many of us come to school by bus, by car, walking?) and questions that can be addressed through observation (e.g., How many people do/do not use the crosswalk?).

Formulates questions that can be addressed through simple experiments (e.g., Which way will the cup land?),

Clarifies and refines questions to make them statistical in nature (e.g., Do you like bananas or strawberries? vs. Should we purchase bananas or strawberries for our class fruit snack?).

Conceptual Thread:

COLLECTING DATA AND ORGANIZING IT INTO CATEGORIES

Collects data from simple surveys concretely (e.g., shoes, popsicle sticks) or using simple records (e.g., check marks, tallies).

Collects data by determining (most) categories in advance (e.g., yes/no; list of choices).
Orders categories by frequency (e.g., most to least).
Generates data by counting or measuring (e.g., linking cube tower: number of cubes or height). Limited to whole units.

Chooses an appropriate method to collect, categorize, and organize data. Collects and compares data from multiple trials of the same experiment.

Creates displays using objects or simple pictographs (may use symbol for data) Organizes display so categories are ordered by frequency. Creates one-to-one displays (e.g., line plot, dot plot, bar graph) Displays data collected in more than one way and describes the differences (e.g., bar graph, pictograph).

Creates simple many-to-one displays (e.g., pictograph where each symbol represents 5 data points).
Creates displays in different formats and scales (e.g., horizontal/vertical, one-to-one/many-to-one, bar graph, line plot).
Creates displays to represent data with two or more attributes (e.g., Carroll diagram, Venn diagram)

BIG IDEA: (cont'd)

Data Management and Probability

Determines the most frequent response/outcome on the data display Interprets displays by noting outcomes that are more/less/same.

Interprets displays by noting how many more/less than other categories.

Reads and interprets information from data displays (e.9., orders by frequency, compares frequencies, determines total number of data points) Describes the shape of data in informal ways (e.g., range, spread, gaps, mode). Critiques whether the display used is appropriate for the data collected.

Conceptual Thread:

USING THE LANGUAGE OF CHANCE TO DESCRIBE AND PREDICT EVENTS

Describes the likelihood of an event (e.g., impossible, unlikely, certain).

Makes predictions based on the question, context, and data presented Lists the possible outcomes of independent events (e.g., tossing coin, rolling number cube, spinning a spinner)
Compares the likelihood of two events (e.g., more likely, less likely, equally likely).

Predicts the likelihood of an outcome in simple probability experiments

 or games.Investigates and describes the fairness of games.
Understands that data collected about past events can help predict the likelihood of future events, but not with certainty.

Uses data collected and displayed to answer initial question directly.
Poses and answers questions about data collected and displayed.

Makes simple inferences about a population based on sample data collected. Explains why a game is fair or unfair.
Judges the validity of statements made from displayed data.

