PEARSON SPECIALIST MATHEMATICS QUEENSLAND
 sTUDENT BOOK
 UNITS 3 \& 4

PEARSON

SPECIALIST MATHEMATICS

QUEENSLAND

UNITS 3\&4

Writing and development team

We are grateful to the following people for their time and expertise in contributing to Pearson Senior Specialist Mathematics 12.

Greg Bland

Senior mathematics teacher, QLD
President QAMT (2016-2018)
Recipient of Australian Award for Teaching Excellence Author

Dr Peter Jenkins

Head of Curriculum Development: Mathematics Head of Mathematics C/Specialist Mathematics PhD in Pure Mathematics Author

Gillian Anderson
Former Head of Mathematics, VIC IB mathematics teacher (Higher and Standard)
IB examination assessor
Author

David Barton

Mathematics author, New Zealand Contributing author

Daniel Hernández Navas

Lead publisher
Content and learning specialist
Pearson Australia
Lindy Bayles
Mathematics teacher, VIC Development Editor
Rodney Anderson

Mathematics teacher, QLD
Answer checker

Chris Brennan

Mathematics teacher, VIC
Reviewer and answer checker

David Coffey

Mathematics teacher and author, VIC
Teacher support material author

Elizabeth Constable

Mathematics teacher, QLD
Teacher support material author Reviewer and answer checker

Heath Copeland

Mathematics teacher, SA
Teacher support material author Reviewer and answer checker

Shelley Cross

Mathematics teacher, QLD
Teacher support material author

Jennifer Dawes

Mathematics teacher, QLD
Reviewer
Emily Frazer
Mathematics teacher, QLD
Reviewer and answer checker

Amy Hawke

Mathematics teacher, QLD
Teacher support material author

Kerri Hill

Mathematics teacher and HoD, QLD
Reviewer and answer checker

Karleigh Nicholls

Mathematics teacher, QLD
Reviewer and answer checker

Thomas Schmierer

Mathematics teacher, QLD
Reviewer and answer checker

Contents

Pearson Specialist Mathematics 12
Writing and development team iii
How to use this book vii
UNIT 3
CHAPTER 1 Induction and proof
Recall 4
1.1 Sums and divisibility 5
1.2 Mathematical induction for sums 13
1.3 Mathematical induction for divisibility 20
Summary 23
Chapter review 24
CHAPTER 2 Vectors and matrices
Recall28
2.1 Vectors review 30
2.2 Vectors in three dimensions 45
2.3 Scalar product of vectors and projections of vectors 55
2.4 Linearly dependent and independent vectors 62
2.5 Vector proofs of geometric theorems67
2.6 The vector product 72
2.7 Vector equation of a straight line in the Cartesian plane 84
2.8 Straight lines in three-dimensional space
2.9 Systems of linear equations1
2.10 Dominance and Leslie matrices 116
2.11 Further applications of matrices 126
Summary 137
Chapter review 142

CHAPTER 3 Vector calculus

Recall 148
3.1 Position vectors as a function of time 149
3.2 Differentiation of vector functions 164
3.3 Velocity and acceleration vectors 169
3.4 Investigating curvilinear motion 181
Summary 187
Chapter review 190
CHAPTER 4 Complex numbers
Recall 196
4.1 Complex number review 198
4.2 Modulus andargument form of a complex number 204
4.3 Roots of complex numbers 213
4.4 The complex plane 220
4.5 The remainder and factor theorem 230
4.6 Complex factors of polynomials 239
Summary 246
Chapter review 249
Exam review Unit 3 (Chapters 1-4) 252
UNIT 4CHAPTER 5 Integration techniques
Recall 256
5.1 Inverse trigonometric functions 257
5.2 Derivatives of inverse trigonometric functions 269
5.3 Anti-derivatives in logarithmic and inverse trigonometric form 278
5.4 Integration by substitution 288
5.5 Integration with trigonometric identities 297
5.6 Partial fractions 301
5.7 Integration by parts 309
Summary 314
Chapter review 316
CHAPTER 6 Applications of integration Recall 320
6.1 Areas between curves 321
6.2 Volumes of solids of revolution 334
6.3 Numerical integration using Simpson's rule6.4 The exponential distributionSummaryChapter review
CHAPTER 7 Rates of change and differentiatequations
7.3 Introduction to differential equations 386
7.4 Qualitative and numerical solutions of differential equations 395
7.5 Analytical solutions of differential equations 409
Summary 418
Chapter review 420
CHAPTER 8 Modelling motion 430
8.1 Linear motion with constant acceleration 432
8.2 Linear motion with non-constant acceleration 449
8.3 Newton's laws of motion 460
8.4 Simple harmonic motion 478
Summary 487
Chapter reviev 489
CHAPTER9 Statistical inference
Recall 496
9.1 Sample means 498
9.2 Sampling distributions 504
9.3 Confidence intervals 512
Summary 520
Chapter review 522
Exam review Unit 4 (Chapters 5-9) 524
Exam review Units 3 \& 4 (Chapters 1-9) 528
Answers 533

Supporting the integrating of technology

Students are supported with the integration of technology in a number of ways. The eBook includes 'How to' user guides covering all basic functionality for the following three graphing calculators:

- TI-84 Plus CE
- TI-Nspire CX (non-CAS)
- CASIO fx-CG50AU

Throughout the student book you will find Technology worked examples strategically placed within the theory for both the TI-Nspire CX (non-CAS) and CASIO fx-CG50AU. The examples clearly demonstrate how the
technology can be used effectively and efficiently for the content being covered in that chapter.
Graphing calculators are not the only technology integrated throughout the Pearson Queensland senior mathematics series. Spreadsheets, Desmos and interactive widgets have been included to provide students with the opportunity to visualise concepts, consolidate their understanding and make mathematical connections.

PEARSON

SPECIALIST MATHEMATICS
 QUEENSLAND

Specialist Mathematics 12
Student book

Student book

The student book has been authored by local authors, ensuring quality content and complete curriculum coverage for Queensland, enabling students to prepare with ease and confidence. We have covered the breadth of the content within our exercise questions, from simpler skills-focused questions to those using unfamiliar contexts and application of the theory learnt. The theory, worked examples and question sets are written in line with the assessment objectives, with the aim of familiarising students with QCE cognitive verbs in the process of dependent and guided instruction. Additional interactives that help explain the theory and consolidate concepts have been ineluded throughout all chapters.

Pearson Reader+

Pearson Reader+ is our next-generation eBook. This is an electronic textbook that students can access on any device, online or offline. It is linked to features, interactives and visual media that will help consolidate students' understanding of concepts and ideas, as well as other useful content specifically developed for senior mathematics. It supports students with appropriate online resources and tools for every section of the student book, providing access to exemplar worked solutions that demonstrate high levels of mathematical and everyday communication. Students will have the opportunity to learn independently through the Explore further tasks and Making connections interactive widgets, which have been designed to engage and support conceptual understanding. Additionally, teachers have access to syllabus maps, a teaching program, sample exams, problem-solving and modelling tasks, and additional banks of questions for extra revision.

Specialist Mathematics 12 eBook

Exam preparation workbook
Additional component for Year 12 only
The Exam preparation workbook provides additional support in preparing students for the external exam. It has been constructed to guide the students through a sequence of preparatory steps and build confidence leading up to the external exam.

Specialist Mathematics 12
Exam preparation workbook

How to use this book

Pearson Specialist Mathematics 12 Queensland Units 3 \& 4

This Queensland senior mathematics series has been written by a team of experienced Queensland teachers for the QCE 2019 syllabus. It offers complete curriculum coverage, rich content and comprehensive teacher support.

Explore further

This eBook feature provides an opportunity for students to consolidate their understanding of concepts and ideas with the aid of technology, and answer a small number of questions to deepen their understanding and broaden their skills base. These activities should take approximately $5-15$ minutes to complete.

Making connections

This eBook feature provides teachers and students with a visual interactive of specific mathematics concepts or ideas to aid students in their understanding.

Tech-free questions

These questions are designed to provide students with the opportunity to practice algebraic manipulations to prepare them for technology-free examination papers.

Worked solutions

Fully worked solutions are provided for every question in the student textbook and can be accessed from the accompanying eBook.

Highlighting common errors

Throughout the exercises, authors have integrated questions designed to highlight common errors frequently made by students. Explanations are given in the worked solutions.

Technology worked examples

These worked examples offer support in using technology such as spreadsheets, graphing calculators and graphing software, and include technologyfocused worked examples and activities.

Key information

Key information and rules are highlighted throughout the chapter.

4 Using the chain rule to solve a related rates problem

A spherical hot air balloon develops a leak so that t minutes later the radius r metres is given by $r(t)=24-3 t^{2}$.
Assuming the balloon remains spherical (that is, $V(r)=\frac{4 \pi}{3} r^{3}$), determine the rate at which the balloon is

Every worked example and question is graded

Every example and question is graded using the three levels of difficulty, as specified in the QCE syllabus:

- simple familiar (1 bar)
- complex familiar (2 bars)
- complex unfamiliar (3 bars)

The visibility of this grading helps ensure all levels of difficulty are well covered. losing air 2 minutes after the leak commenced.

THINKING

1 Identify the key elements in the problem then write the given information and the required rate.

Apply the chain rule to write the required rate of change in terms of other related rates.

Volume is an explicit parametric function of time, so

$$
V(t) \equiv V(r(t))
$$

$$
\frac{d V}{d t}=\frac{d V}{d r} \times \frac{d r}{d t}
$$

$$
\frac{d V}{d t}=\frac{d}{d r}\left(\frac{4 \pi}{3} r^{3}\right) \times \frac{d}{d t}\left(24-3 t^{2}\right)
$$

$$
=4 \pi\left(r^{2}\right) \times(-6 t)
$$

$$
=4 \pi\left(24-3 t^{2}\right)^{2} \times(-6 t)
$$

$$
\left.\frac{d V}{d t}\right|_{t=2}=-6912 \pi
$$

After 2 minutes, the balloon is losing air at a rate of 6912π cubic metres per minute.

Meeting the needs of the QCE syllabus

WARNING

Never substitute values for changing quantities into a related rates problem until after all derivatives have been taken. Substituting too soon makes changeable variables behave like constants, with zero
The authors have integrated both the cognitive verbs and the language of the syllabus objectives throughout the worked examples and questions.

Warning boxes

Warning boxes are located throughout the chapter to alert students to common errors and misconceptions.

Summary

At the end of each chapter, there is a summary of the key facts and rules discussed in the chapter.

Recall

Differentiate

1 Calculate $\frac{d x}{d t}$ for each of the following:
(a) $x=1-\cos (t)$
(b) $x=\cos ^{2}(t)$
(c) $x=e^{2 t}-4 t^{3}$
(d) $x=\sec (t)$

2 Calculate $\frac{d y}{d t}$ for each of the following:
(a) $y=4 \sin (t)$
(b) $y=\sin ^{2}(t)$
(c) $y=\log _{e}(2 t)$
(d) $y=\tan (t)$

Calculate the derivative for a given value
3 If $f(t)=10 t-5 t^{2}$, calculate $f^{\prime}(2)$.
4 If $f(t)=\sin (2 t)$, calculate without using technology $f^{\prime}\left(\frac{\pi}{6}\right)$.
5 If $f(t)=3 \cos ^{2}(\pi t)$, calculate without using technology $f^{\prime}\left(\frac{1}{4}\right)$.
6 If $f(t)=\sqrt{2 t+1}$, calculate $f^{\prime}\left(\frac{1}{2}\right)$.

Anti-differentiate

7 Calculate the following:

(a) $\int\left(e^{2 t}+e^{-t}\right) d t$
(b) $\int 3 \sin (2 t) d t$
(c) $\int(4 t+1)^{2} d t$
(d) $\int \frac{1}{3 t+2} d t$

Solve problems involving displacement and velocity
8 A particle moves in a straight line such that its position, x metres, relative to an origin O at time t seconds is given by $x(t)=-t^{2}+2 t-8, t \geq 0$.
(a) State the particle's initial position.
(b) Determine the particle's velocity at $t=4$.
(c) Determine when the particle's velocity is zero.

9 The velocity, $v \mathrm{~m} / \mathrm{s}$, of a particle moving in a straight line at time t seconds is given by $v(t)=6-2 t$. At time $t=0$, the particle is 3 metres to the right of the origin O.
(a) Determine $x(t)$.
(b) Describe the particle's position relative to O after 4 seconds.
(c) Calculate the total distance travelled by the particle after 4 seconds.

Calculate the magnitude of a vector

10 Calculate the magnitude of the following vectors:
(a) $\boldsymbol{a}=2 \hat{\boldsymbol{i}}+3 \hat{\boldsymbol{j}}-\hat{\boldsymbol{k}}$
(b) $\boldsymbol{c}=-5 \hat{\boldsymbol{i}}+4 \hat{\boldsymbol{j}}-2 \sqrt{2} \hat{\boldsymbol{k}}$

Use the scalar product
11 Let $\boldsymbol{a}=\hat{\boldsymbol{i}}-3 \hat{\boldsymbol{j}}+2 \hat{\boldsymbol{k}}, \boldsymbol{b}=-3 \hat{\boldsymbol{i}}-5 \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$ and $\boldsymbol{c}=2 \hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}-4 \hat{\boldsymbol{k}}$. Calculate:
(a) $\boldsymbol{a} \cdot \boldsymbol{b}$
(b) $\boldsymbol{a} \cdot \boldsymbol{c}$
(c) $\boldsymbol{b} \cdot \boldsymbol{c}$

12 Calculate the angle, in radians, between each of the following pairs of vectors. State each angle correct to three significant figures.
(a) $\boldsymbol{a}=\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{j}}+2 \hat{\boldsymbol{k}}$ and $\boldsymbol{b}=2 \hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}-2 \hat{\boldsymbol{k}}$
(b) $\boldsymbol{a}=3 \hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}-6 \hat{\boldsymbol{k}}$ and $\boldsymbol{b}=-\hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}+5 \hat{\boldsymbol{k}}$

13 Let $\boldsymbol{a}=-\hat{\boldsymbol{i}}+m \hat{\boldsymbol{j}}-3 \hat{\boldsymbol{k}}$ and $\boldsymbol{b}=m \hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}-4 \hat{\boldsymbol{k}}, m \in \mathbb{R}$. If \boldsymbol{a} is perpendicular to \boldsymbol{b}, determine the value of m.

Consider a function f that is differentiable throughout its domain.
The derivative of f is defined by $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
By analogy, you can define the derivative of a vector function of a real variable.
Suppose $\boldsymbol{r}(t)$ and $\boldsymbol{r}(t+\delta t)$ are position vectors of neighbouring points P and Q on the smooth continuous curve defined by $\boldsymbol{r}(t)$.
By the triangle law of vector addition:

$$
\begin{aligned}
& \overrightarrow{O P}+\overrightarrow{P Q}=\overrightarrow{O Q} \\
& \begin{aligned}
\overrightarrow{P Q} & =\delta \boldsymbol{r} \\
\delta \boldsymbol{r} & =\overrightarrow{P Q} \\
& =\overrightarrow{O Q}-\overrightarrow{O P} \\
& =\boldsymbol{r}(t+\delta t)-\boldsymbol{r}(t)
\end{aligned} \\
& \text { So } \frac{\delta \boldsymbol{r}}{\delta t}=\frac{\boldsymbol{r}(t+\delta t)-r(t)}{\delta t}, \delta t \neq 0 .
\end{aligned}
$$

$$
\text { Provided that the limit exists, the derivative } \frac{d \boldsymbol{r}}{d t} \text { is defined as: }
$$

$$
\frac{d r}{d t}=\lim _{\delta t \rightarrow 0} \frac{\delta r}{\delta t}
$$

Re-expressing $\frac{\delta \boldsymbol{r}}{\delta t}$ as $\frac{1}{\delta t}(\delta \boldsymbol{r})$, see that $\frac{\delta \boldsymbol{r}}{\delta t}$ is a vector parallel to $\delta \boldsymbol{r}$.i.e. $\frac{\delta \boldsymbol{r}}{\delta t}$ is a vector whose direction is along $\overrightarrow{P Q}$. By analogy with real (scalar) calculus, $\frac{d \boldsymbol{r}}{d t}$ is denoted as the rate of change of \boldsymbol{r} with respect to t at the point P.
As $\delta t \rightarrow 0, Q$ approaches P (shown by $\mathcal{Q}_{1}, Q_{2}, Q_{3} \ldots$).
As $\delta t \rightarrow 0, \boldsymbol{r}(t+\delta t) \rightarrow \boldsymbol{r}(t)$ and $\delta \boldsymbol{o}$ the direction of $\frac{\delta \boldsymbol{r}}{\delta t}$ successively
approaches the tangent at P. approaches the tangent at P.
Therefore, a geometric interpretation for $\frac{d \boldsymbol{r}}{d t}$ has been established.

Rules for differentiation of vector functions

Vector functions can be differentiated in a similar manner to real functions.

Derivative of a constant vector

This result can be verified as follows:

$$
\begin{aligned}
\frac{d \boldsymbol{r}}{d t} & =\lim _{\delta t \rightarrow 0} \frac{\delta \boldsymbol{r}}{\delta t} \\
& =\lim _{\delta t \rightarrow 0} \frac{\boldsymbol{r}(t+\delta t)-\boldsymbol{r}(t)}{\delta t} \\
& =\lim _{\delta t \rightarrow 0} \frac{\boldsymbol{c}-\boldsymbol{c}}{\delta t} \\
& =\lim _{\delta t \rightarrow 0} \frac{\mathbf{0}}{\delta t} \\
& =\mathbf{0}
\end{aligned}
$$

Note that $\frac{d \hat{\boldsymbol{i}}}{d t}=\frac{d \hat{\boldsymbol{j}}}{d t}=\frac{d \hat{\boldsymbol{k}}}{d t}=\mathbf{0}$.

If $\boldsymbol{r}=\boldsymbol{c}$, where \boldsymbol{c} is a constant vector, then $\frac{d r}{d t}=0$.

Derivative of a product of a scalar function and a constant vector c

This result can be verified as follows:

$$
\begin{aligned}
\frac{d \boldsymbol{r}}{d t} & =\lim _{\delta t \rightarrow 0} \frac{\delta \boldsymbol{r}}{\delta t} \\
& =\lim _{\delta t \rightarrow 0} \frac{\boldsymbol{r}(t+\delta t)-\boldsymbol{r}(t)}{\delta t} \\
& =\lim _{\delta t \rightarrow 0} \frac{s(t+\delta t) \boldsymbol{c}-s(t) \boldsymbol{c}}{\delta t} \\
& =\lim _{\delta t \rightarrow 0} \frac{[s(t+\delta t)-s(t)] \boldsymbol{c}}{\delta t} \\
& =\frac{d s}{d t} \boldsymbol{c}
\end{aligned}
$$

Derivative of a sum of vectors

This result can be verified as follows:

$$
\begin{aligned}
\frac{d \boldsymbol{r}}{d t} & =\lim _{\delta t \rightarrow 0} \frac{\delta \boldsymbol{r}}{\delta t} \\
& =\lim _{\delta t \rightarrow 0} \frac{\boldsymbol{r}(t+\delta t)-\boldsymbol{r}(t)}{\delta t} \\
& =\lim _{\delta t \rightarrow 0} \frac{\boldsymbol{u}(t+\delta t)+\boldsymbol{v}(t+\delta t)-[\boldsymbol{u}(t)+\boldsymbol{v}(t)]}{\delta t} \\
& =\lim _{\delta t \rightarrow 0} \frac{[\boldsymbol{u}(t+\delta t)-\boldsymbol{u}(t)]+[\boldsymbol{v}(t+\delta t)-\boldsymbol{v}(t)]}{\delta t} \\
& =\frac{d \boldsymbol{u}}{d t}+\frac{d \boldsymbol{v}}{d t}
\end{aligned}
$$

If \boldsymbol{u} and \boldsymbol{v} are functions of \boldsymbol{t}, and if $\boldsymbol{r}=\boldsymbol{u}+\boldsymbol{v}$, then $\frac{d \boldsymbol{r}}{d t}=\frac{d \boldsymbol{u}}{d t}+\frac{d \boldsymbol{v}}{d t}$.

If $\boldsymbol{r}=\boldsymbol{\boldsymbol { c }}$, where s is a function of t and c is a constant vector, then $\frac{d r}{d t}=\frac{d s}{d t} \boldsymbol{c}$.

2 Differentiate each component of $\frac{d \boldsymbol{r}}{d t}$ to

$$
\frac{d \boldsymbol{r}}{d t}=6 t \hat{\boldsymbol{i}}+\left(4-3 t^{2}\right) \hat{\boldsymbol{j}}+5 \cos (5 t) \hat{\boldsymbol{k}}
$$ determine $\frac{d^{2} \boldsymbol{r}}{d t^{2}}$.

$$
\frac{d^{2} \boldsymbol{r}}{d t^{2}}=6 \hat{\boldsymbol{i}}-6 \hat{\boldsymbol{j}}-25 \sin (5 t) \hat{\boldsymbol{k}}
$$

9 Differentiating and substituting a value into a vector function

Determine the value of $\boldsymbol{r}^{\prime}(0)$ and $\boldsymbol{r}^{\prime \prime}(0)$ if $\boldsymbol{r}(t)=\sin (t) \hat{\boldsymbol{i}}+2 t^{2} \hat{\boldsymbol{j}}+e^{-2 t} \hat{\boldsymbol{k}}$.

THINKING

1 Differentiate each component of $\boldsymbol{r}(t)$ to determine $\boldsymbol{r}^{\prime}(t)$.

2 Substitute $t=0$ into $\boldsymbol{r}^{\prime}(t)$.

WORKING

$$
\begin{aligned}
\boldsymbol{r}(t) & =\sin (t) \hat{\boldsymbol{i}}+2 t^{2} \hat{\boldsymbol{j}}+e^{-2 t} \hat{\boldsymbol{k}} \\
\boldsymbol{r}^{\prime}(t) & =\cos (t) \hat{\boldsymbol{i}}+4 \hat{\boldsymbol{j}}-2 e^{-2 t} \hat{\boldsymbol{k}} \\
\boldsymbol{r}^{\prime}(0) & =\cos (0) \hat{\boldsymbol{i}}+4(0) \hat{\boldsymbol{j}}-2 e^{-2(0)} \hat{\boldsymbol{k}} \\
& =\hat{\boldsymbol{i}}-\hat{\mathbf{k}} \hat{\boldsymbol{k}}
\end{aligned}
$$

$$
r^{\prime}(t)=\cos (t) \hat{i}+4 t \hat{j}-2 e^{-2 t} \hat{\boldsymbol{k}}
$$

$$
r^{\prime \prime}(t)=-\sin (t) \hat{\boldsymbol{i}}+4 \hat{\boldsymbol{j}}+4 e^{-2 t} \hat{\boldsymbol{k}}
$$

$$
r^{\prime \prime}(0)=-\sin (0) \hat{\boldsymbol{i}}+4 \hat{\boldsymbol{j}}+4 e^{-2(0)} \hat{\boldsymbol{k}}
$$

$$
=4 \hat{\boldsymbol{j}}+4 \hat{\boldsymbol{k}}
$$

$$
r^{\prime}(0)=\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{k}}
$$

$$
\boldsymbol{r}^{\prime \prime}(0)=4 \hat{\boldsymbol{j}}+4 \hat{\boldsymbol{k}}
$$

Consider a curve described by the vector equation $\boldsymbol{r}(t)=x(t) \hat{\boldsymbol{i}}+y(t) \hat{\boldsymbol{j}}$. The gradient of the curve at the point (x, y) can be found using related rates, namely:
$\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}$, where $\frac{d t}{d x}=\frac{1}{\frac{d x}{d t}}$.
Worked example 10 illustrates this.

10 Calculating the gradient at a point on a curve defined by a vector function

A curve is described by the vector equation $\boldsymbol{r}(t)=2 t \hat{\boldsymbol{i}}+(t+2) \hat{\boldsymbol{j}}, t \geq 0$.
(a) Calculate the gradient of the curve at the point when $t=2$.

THINKING

1 Write and number the parametric equations.

WORKING

$$
\begin{aligned}
& x=2 t \\
& y=t+2
\end{aligned}
$$

2 Calculate $\frac{d x}{d t}$ and $\frac{d y}{d t}$.

$$
\frac{d x}{d t}=2 \text { and } \frac{d y}{d t}=1
$$

3 Use the chain rule $\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}$ to determine

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d t} \frac{d t}{d x} \\
& =1 \times \frac{1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

4 Interpret the answer.
The gradient of the curve at $t=2$ is $\frac{1}{2}$.
(b) Calculate $\boldsymbol{r}^{\prime}(t)$.

Differentiate each component of $\boldsymbol{r}(t)$ to determine $\boldsymbol{r}^{\prime}(t)$.

$$
\begin{aligned}
& \boldsymbol{r}(t)=2 t \hat{\boldsymbol{i}}+(t+2) \hat{\boldsymbol{j}} \\
& \boldsymbol{r}^{\prime}(t)=2 \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}, t \geq 0
\end{aligned}
$$

(c) Determine a unit vector, $\hat{\boldsymbol{s}}$, parallel to the tangent to the curve at the point when $t=2$.

$$
1 \text { Use } \hat{\boldsymbol{s}}=\frac{\boldsymbol{s}}{|\boldsymbol{s}|}
$$

$$
s=\boldsymbol{r}^{\prime}(t) \text { then }|\boldsymbol{s}|=\sqrt{2^{2}+1^{2}}=\sqrt{5}
$$

2 Write the answer.

$$
\begin{aligned}
\hat{\boldsymbol{s}} & =\frac{\boldsymbol{s}}{|\boldsymbol{s}|} \\
& =\frac{(2 \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}})}{\sqrt{5}} \\
& =\frac{1}{\sqrt{5}}(2 \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}})
\end{aligned}
$$

EXERCISE

3.2 Differentiation of vector functions

1 Calculate $\frac{d \boldsymbol{r}}{d t}$ and $\frac{d^{2} \boldsymbol{r}}{d t^{2}}$ for each of the following vector functions:
(a) $\boldsymbol{r}=5 t^{2} \hat{\boldsymbol{i}}-2 \boldsymbol{t}^{3} \hat{\boldsymbol{j}}-t \hat{\boldsymbol{k}}$
(b) $\boldsymbol{r}=4 \sin (2 t) \hat{\boldsymbol{i}}+3 \cos (2 t) \hat{\boldsymbol{j}}+t^{2} \hat{\boldsymbol{k}}$

2 Calculate $\boldsymbol{r}^{\prime}(\alpha)$ and $\boldsymbol{r}^{\prime \prime}(\alpha)$ for each of the following vector functions and values of α :
(a) $\boldsymbol{r}(t)=-\sin (2 t) \hat{\boldsymbol{i}}+\cos (2 t) \hat{\boldsymbol{j}}+e^{-t} \hat{\boldsymbol{k}}, \alpha=0$
(b) $\boldsymbol{r}(t)=e^{-t} \hat{\boldsymbol{i}}+e^{t} \hat{\boldsymbol{j}}+\left(t^{3}-1\right) \hat{\boldsymbol{k}}, \alpha=0$
(c) $\boldsymbol{r}(t)=10 t \hat{\boldsymbol{i}}+\left(10 \sqrt{3}-5 t^{2}\right) \hat{\mathbf{j}}, \alpha=2$
(d) $\boldsymbol{r}(t)=\sec (t) \hat{\boldsymbol{i}}+\tan (t) \hat{\boldsymbol{j}}, \alpha=\frac{\pi}{4}$
（a）Calculate the gradient of the curve at the point when $t=1$ ．
（b）Calculate $\boldsymbol{r}^{\prime}(t)$ ．
（c）Determine a unit vector，$\hat{\boldsymbol{s}}$ ，parallel to the tangent to the curve where $t=1$ ．
4 A curve is described by the vector equation $\boldsymbol{r}(t)=\left(t^{2}+t\right) \hat{\boldsymbol{i}}+\left(t^{2}-t\right) \hat{\boldsymbol{j}}, t \geq 0$ ．
（a）Calculate the gradient of the curve at the point when $t=0$ ．
（b）Calculate $\boldsymbol{r}^{\prime}(t)$ ．
（c）Determine a unit vector，$\hat{\boldsymbol{s}}$ ，parallel to the tangent to the curve where $t=0$ ．
5 A curve is described by the vector equation $\boldsymbol{r}(t)=\cos (2 t) \hat{\boldsymbol{i}}+\cos (t) \hat{\boldsymbol{j}}, 0 \leq t \leq 2 \pi$ ．
（a）Calculate the gradient of the curve at the point when $t=\frac{\pi}{3}$ ．
（b）Calculate $\boldsymbol{r}^{\prime}(t)$ ．
（c）Determine a unit vector，$\hat{\boldsymbol{s}}$ ，parallel to the tangent to the curve where $t=\frac{\pi}{3}$
6 For each of the following vector functions，calculate $\frac{d r}{d t}$ and determine any restrictions on t ．
（a） $\boldsymbol{r}=t(\sin (t) \hat{\boldsymbol{i}}+\cos (t) \hat{\boldsymbol{j}})$
（b） $\boldsymbol{r}=t\left(\log _{e}(t) \hat{\boldsymbol{i}}+e^{t} \hat{\boldsymbol{j}}\right)$

7 A curve is described by the vector equation $\boldsymbol{r}(t)=(5 t+2) \hat{\boldsymbol{i}}+3 t \hat{j}, t \in \mathbb{R}$ ．The gradient of the curve at (x, y) is：
A 3
B 5
$\frac{3}{5} \quad$ D $\frac{5}{3}$
$r(t)=\cos ^{3}(t) \hat{\boldsymbol{i}}+\sin ^{3}(t) \hat{\boldsymbol{j}}, 0 \leq t \leq 2 \pi$.
（a）Calculate the gradient of the curve at the point when $t=\frac{2 \pi}{3}$ ．
（b）Calculate $\boldsymbol{r}^{\prime}(t)$ ．
（c）Determine a unit vector，\hat{s} ，parallel to the tangent to the curve where $t=\frac{2 \pi}{3}$ ．
9 A curve is described by the vector equation $\boldsymbol{r}(t)=e^{2 t} \hat{\boldsymbol{i}}+\sin (2 t) \hat{\boldsymbol{j}}, t \geq 0$ ．Calculate the corresponding time t at which the gradient of this curve is equal to $\frac{1}{2}$ ．
10 A curve C is defined by the parametric equations $x=1+t$ and $y=t^{2}, t \geq 0$ ．
（a）Determine the Cartesian equation of C and determine its domain．
（b）Sketch the graph of C ．
（c）Determine the vector equation of C ．
（d）Determine a unit vector，$\hat{\boldsymbol{s}}$ ，parallel to the tangent to the curve where $t=1$ ．

11 The position vector of a particle at time t ，is given by $\boldsymbol{r}(t)=\sin (t) \hat{\boldsymbol{i}}+t \hat{\boldsymbol{j}}+\cos (t) \hat{\boldsymbol{k}}$ ．Prove that $\boldsymbol{r}^{\prime}(t)$ is perpendicular to $\boldsymbol{r}^{\prime \prime}(t)$ ．

12 The position vector of a particle at time t is given by $\boldsymbol{r}(t)=4 t \hat{\boldsymbol{i}}+4 t^{2} \hat{\boldsymbol{j}}, t \geq 0$ ．Determine when the magnitude of the angle between $\boldsymbol{r}^{\prime}(t)$ and $\boldsymbol{r}^{\prime \prime}(t)$ is $\frac{\pi}{4}$ ．

Velocity and acceleration vectors

You have learned how a moving particle can be defined by a position vector, in terms of time, t. You have also learned how it is possible to differentiate a vector function.

In your study of instantaneous rates of change, you will be aware of the relationship between the process of differentiation and the calculation of velocity and acceleration for rectilinear motion. Vectors offer a useful method for extending these calculations to objects moving in three dimensions.

Velocity vector

Consider again the vector $\boldsymbol{r}(t)$, which represents the position of a particle at point P at a certain time, t. After a short time, δt, the particle is at Q with position vector $\boldsymbol{r}(t+\delta t)$.

The displacement (or change in position) of the particle during the time interval δt is:

$\delta \boldsymbol{r}=\overrightarrow{P Q}=\overrightarrow{O Q}-\overrightarrow{O P}=\boldsymbol{r}(t+\delta t)-\boldsymbol{r}(t)$
Since velocity is the time ratio of change of displacement, the average velocity of the particle during this time interval is:
$\frac{\delta r}{\delta t}=\frac{r(t+\delta t)-\boldsymbol{r}(t)}{\delta t}, \delta t \neq 0$
Re-expressing $\frac{\delta r}{\delta t}$ as $\frac{1}{\delta t}(\delta r)$, you will see that $\frac{\delta r}{\delta t}$ is a vector parallel to δr. i.e. $\frac{\delta r}{\delta t}$ is a vector whose direction is along $\overrightarrow{P Q}$.
The instantaneous velocity of P at time t is therefore given by $\lim _{\delta t \rightarrow 0} \frac{\boldsymbol{r}(t+\delta t)-\boldsymbol{r}(t)}{\delta t}$.
By analogy with scalar calculus, this rate of change limit is denoted by $\frac{d \boldsymbol{r}}{d t}$ or $\dot{\boldsymbol{r}}$.
If $\boldsymbol{r}(t)$ defines the position vector of a particle P at time t, then the velocity at P is:

$$
\boldsymbol{v}=\boldsymbol{r}^{\prime}(t)=\dot{\boldsymbol{r}}=\frac{d \boldsymbol{r}}{d t}=\lim _{\delta t \rightarrow 0} \frac{\boldsymbol{r}(t+\delta t)-\boldsymbol{r}(t)}{\delta t}
$$

The direction of \boldsymbol{v} is the direction of $\overrightarrow{P Q}$ as $\delta t \rightarrow 0$. i.e. as $Q \rightarrow P$ (see following diagram).

Therefore, the instantaneous velocity of the particle, \boldsymbol{v}, is parallel to the path of the particle at P, in the direction of motion.

If $\boldsymbol{v}=\frac{d \boldsymbol{r}}{d t}$, i.e. the velocity of the particle is the rate of change of position, then $v=|\boldsymbol{v}|$ is the speed of the particle.

11
 Calculating the velocity vector

A particle moves so that its position vector at time t is given by $\boldsymbol{r}(t)=t \hat{\boldsymbol{i}}+(t-2)^{2} \hat{\boldsymbol{j}}, t \geq 0$.
(a) Determine an expression for the velocity of the particle at time t.

THINKING

Differentiate each component with respect to t to calculate $\boldsymbol{v}(t)$.

WORKING

$\boldsymbol{r}(t)=\hat{\boldsymbol{i}}+(t-2)^{2} \hat{\boldsymbol{j}}$
$v=\frac{d r}{d t}$

$$
\boldsymbol{v}(t)=\hat{\boldsymbol{i}}+(2 t-4) \hat{\boldsymbol{j}}
$$

(b) Calculate the velocity of the particle at $t=1$ and $t=2$.

Substitute the given values of t into $\boldsymbol{v}(t)$.

$$
\begin{aligned}
& \boldsymbol{v}(t)=\hat{\boldsymbol{i}}+(2 t-4) \hat{\boldsymbol{j}} \\
& \boldsymbol{v}(1)=\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{j}} \\
& \boldsymbol{v}(2)=\hat{\boldsymbol{i}}
\end{aligned}
$$

(c) Sketch the path of the particle and draw the velocity vectors at $t=1$ and $t=2$.

1 Write and number the parametric equations.

$$
\begin{align*}
& x=t \tag{1}\\
& y=(t-2)^{2} \tag{2}
\end{align*}
$$

2 Write the Cartesian equation with domain.
The Cartesian equation is $y=(x-2)^{2}, x \geq 0$.
3 Determine the location of the particle at $t=1$ and $t=2$. These will determine the location for the tails of the velocity vectors.

$$
\begin{aligned}
& \text { At } t=1: \\
& \begin{aligned}
\boldsymbol{r}(1) & =1 \hat{\boldsymbol{i}}+(1-2)^{2} \hat{\boldsymbol{j}} \\
& =1 \hat{\boldsymbol{i}}+1 \hat{\boldsymbol{j}} \\
\text { At } t & =2: \\
\boldsymbol{r}(1) & =2 \hat{\boldsymbol{i}}+(2-2)^{2} \hat{\boldsymbol{j}} \\
& =2 \hat{\boldsymbol{i}}+0 \hat{\boldsymbol{j}}
\end{aligned}
\end{aligned}
$$

4 Sketch the parabola with correct domain and velocity vectors at $t=1$ and $t=2$.

The velocity vectors are tangential to the particle's path at the respective points.

Acceleration vector

Acceleration is the rate of change of velocity with respect to time. Calculation of acceleration from the velocity vector is somewhat similar to the calculation of velocity from the position vector, as previously described.

Unless the particle is moving in a straight line, \boldsymbol{a} is not parallel to \boldsymbol{v}.
$\boldsymbol{a}=\boldsymbol{v}^{\prime}(t)=\dot{\boldsymbol{v}}=\frac{d \boldsymbol{v}}{d t}=\lim _{\delta t \rightarrow 0} \frac{\boldsymbol{v}(t+\delta t)-\boldsymbol{v}(t)}{\delta t}$
or, equivalently,

$$
\boldsymbol{a}=\boldsymbol{r}^{\prime \prime}(t)=\ddot{\boldsymbol{r}}=\frac{d^{2} \boldsymbol{r}}{d t^{2}}
$$

In general, \boldsymbol{a} has a component tangential to the curve at P (the direction of \boldsymbol{v}) and a component normal to the curve at P. To understand how this works, consider the case of projectile motion (a form of motion you will study in greater depth later in this chapter). In simplified projectile motion, the only acceleration acting on a particle is due to gravity (and this acceleration acts in a downwards direction). The path traced out by the point is parabolic, and the acceleration vector $\boldsymbol{a}(t)$ can be split into the normal vector $\boldsymbol{a}_{N}(t)$, shown in green, and the tangential vector $\boldsymbol{a}_{T}(t)$, shown in blue:

Consider also a scenario where a car is travelling around a circular track at constant speed. Is the car accelerating?

By definition, the car is accelerating if its velocity is changing. Although the magnitude of the car's velocity (its speed) is constant, the car is continually changing direction so that its velocity is changing. Hence, the car is accelerating.

Making connections

Observe the vector direction and acceleration of a particle
Move the sliders to observe how the vector acceleration changes.

12 Calculating the acceleration vector and resolving it into tangential and normal components

A particle moves so that its position vector at time t is given by $\boldsymbol{r}(t)=t \hat{\boldsymbol{i}}+(t-2)^{2} \hat{\boldsymbol{j}}, t \geq 0$.
(a) Determine an expression for the acceleration of the particle at time t.

THINKING
1 Differentiate each component with respect to time to determine $\boldsymbol{v}(t)$.

WORKING

$$
\begin{aligned}
& \boldsymbol{r}(t)=t \hat{\boldsymbol{i}}+(t-2)^{2} \hat{\boldsymbol{j}} \\
& \boldsymbol{v}(t)=\boldsymbol{r}^{\prime}(t)=\hat{\boldsymbol{i}}+(2 t-4) \hat{\boldsymbol{j}}
\end{aligned}
$$

2 Differentiate again to determine $\boldsymbol{a}(t) . \quad \boldsymbol{v}(t)=\hat{\boldsymbol{i}}+(2 t-4) \hat{\boldsymbol{j}}$
$\boldsymbol{a}=\frac{d \boldsymbol{v}}{d t}$
$\boldsymbol{a}(t)=2 \hat{\boldsymbol{j}}$
The particle has a constant acceleration throughout its motion.
(b) Resolve the acceleration vector at $t=1$ into tangential and normal components, showing them to scale on a diagram.

1 Calculate a unit vector parallel to $\boldsymbol{v}(1)$.

2 Calculate the vector projection of \boldsymbol{a} onto $\hat{\boldsymbol{v}}(1)$ to determine the tangential component of \boldsymbol{a}.
$\boldsymbol{v}(1)=\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{j}}$ and so a unit vector parallel to it is $\hat{\boldsymbol{v}}(1)=\frac{1}{\sqrt{5}}(\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{j}})$

$$
\begin{aligned}
(\boldsymbol{a} \cdot \hat{\boldsymbol{v}}(1)) \hat{\boldsymbol{v}}(1) & =\left(2 \hat{\boldsymbol{j}} \cdot \frac{1}{\sqrt{5}}(\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{j}})\right) \frac{1}{\sqrt{5}}(\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{j}}) \\
& =\left(-\frac{4}{\sqrt{5}}\right)\left(\frac{1}{\sqrt{5}}\right)(\boldsymbol{i}-2 \boldsymbol{j}) \\
& =-\frac{4}{5}(\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{j}})
\end{aligned}
$$

3 Calculate the vector projection of \boldsymbol{a} perpendicular to $\hat{\boldsymbol{v}}(1)$ to determine the normal component of \boldsymbol{a}.

The normal component of \boldsymbol{a} is given by $\boldsymbol{a}-(\boldsymbol{a} \cdot \hat{\boldsymbol{v}}(1)) \hat{\boldsymbol{v}}(1)$.

$$
\begin{aligned}
\boldsymbol{a}-(\boldsymbol{a} \cdot \hat{\boldsymbol{v}}(1)) \hat{\boldsymbol{v}}(1) & =2 \hat{\boldsymbol{j}}-\left(-\frac{4}{5}(\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{j}})\right) \\
& =2 \hat{\boldsymbol{j}}+\frac{4}{5}(\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{j}}) \\
& =\frac{4}{5} \hat{\boldsymbol{i}}+\frac{2}{5} \hat{\boldsymbol{j}} \\
& =\frac{2}{5}(2 \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}})
\end{aligned}
$$

4 Determine the position of the particle at $t=1$.
$\boldsymbol{r}(t)=t \hat{\boldsymbol{i}}+(t-2)^{2} \hat{\boldsymbol{j}}$ This will be the point from which the acceleration vectors will be sketched.

5 Sketch the tangential and normal components of \boldsymbol{a} to scale.
$\boldsymbol{r}(1)=1 \hat{\boldsymbol{i}}+1 \hat{\boldsymbol{j}}$
Therefore, draw the vectors from the point $(1,1)$.

(c) Calculate the angle between the velocity and the acceleration vectors at $t=1$. Give your answer in degrees correct to 1 decimal place.

1 Determine the relevant vectors.

2 Substitute into the dot product formula $\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos (\theta)$.

3 Rearrange the equation to make $\cos (\theta)$ the subject.

$$
\begin{aligned}
\boldsymbol{v}(1) & =\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{j}} \\
\boldsymbol{a}(1) & =2 \hat{\boldsymbol{j}}
\end{aligned}
$$

Let $\boldsymbol{\theta}$ be the angle between $\boldsymbol{v}(1)$ and \boldsymbol{a}, where

$$
\boldsymbol{v}(1) \cdot \boldsymbol{a}=|\boldsymbol{v}(1)||\boldsymbol{a}| \cos (\theta) .
$$

$$
(\hat{\boldsymbol{i}}-2 \hat{\boldsymbol{j}}) \cdot 2 \hat{\boldsymbol{j}}=(\sqrt{5})(2) \cos (\theta)
$$

$$
-4=(\sqrt{5})(2) \cos (\theta)
$$

$$
\cos (\theta)=-\frac{2}{\sqrt{5}}
$$

$$
\theta=\cos ^{-1}\left(-\frac{2}{\sqrt{5}}\right)
$$

4 Express θ in degrees correct to 1 decimal place.
5 Interpret the answer.
$\theta=153.4^{\circ}$ (1d.p.)
The angle between the velocity and acceleration yectors at $t=1$ is 153.4°.

t Technology worked example

Tangential and normat components of an acceleration veetor

Calculations involving position-velocity and acceleration vectors

In the following figure, a particle is at A with position vector \boldsymbol{r} at time $t=0$.
If the particle is moving with constant velocity \boldsymbol{v}, then it is moving in a straight line and in time interval t it undergoes a displacement $t v$.

Hence at time t it has position vector $\overrightarrow{O B}=\boldsymbol{r}+t \boldsymbol{v}$.
The following worked example uses this result.

13 Particles moving with a constant velocity vector

Two passenger ferries, F and G, travelling at constant velocities are observed from a clifftop at 11:00 am. Their position and velocity vectors are:
$\boldsymbol{r}_{F}=30 \hat{\boldsymbol{i}}-15 \hat{\boldsymbol{j}} \quad \boldsymbol{v}_{F}=-10 \hat{\boldsymbol{i}}+15 \hat{\boldsymbol{j}}$
$\boldsymbol{r}_{G}=-10 \hat{\boldsymbol{i}}+5 \hat{\boldsymbol{j}} \quad \boldsymbol{v}_{G}=10 \hat{\boldsymbol{i}}+5 \hat{\boldsymbol{j}}$
where distance is measured in kilometres and time in hours.
Determine whether the ferries will collide if they maintain their velocities. If there is a collision, determine when the collision will occur. Identify any assumptions and comment on the effects of these assumptions on your solution.

THINKING

1 Use $\boldsymbol{r}+\boldsymbol{v}$ to determine the position vectors of both ferries at time t hours after 11:00 am.

2 The two ferries will collide if there is a value of $t(>0)$ such that $\boldsymbol{r}_{F}=\boldsymbol{r}_{G}$.

3 Equate the $\hat{\boldsymbol{i}}$ components and solve for t.

4 Equate the $\hat{\boldsymbol{j}}$ components and solve for t.

5 Write a conclusion.

6 Identify any assumptions, and comment on the effects of these assumptions on your solution.

WORKING

Ferry F:

$$
\begin{aligned}
\boldsymbol{r}_{F} & =30 \hat{\boldsymbol{i}}-15 \hat{\boldsymbol{j}}+t(-10 \hat{\boldsymbol{i}}+15 \hat{\boldsymbol{j}}) \\
& =(30-10 t) \hat{\boldsymbol{i}}+(15 t-15) \hat{\boldsymbol{j}}
\end{aligned}
$$

Ferry G :

$$
\begin{aligned}
\boldsymbol{r}_{G} & =-10 \hat{\boldsymbol{i}}+5 \hat{\boldsymbol{j}}+t(10 \hat{\boldsymbol{i}}+15 \hat{\boldsymbol{j}}) \\
& =(10 t-10) \hat{\boldsymbol{i}}+(15 t+5) \hat{\boldsymbol{j}}
\end{aligned}
$$

$(30-10 t) \hat{\boldsymbol{i}}+(15 t-15) \hat{\boldsymbol{j}}=(10 t-10) \hat{\boldsymbol{i}}+(15 t+5) \hat{\boldsymbol{j}}$

$$
\begin{aligned}
30-10 t & =10 t-10 \\
20 t & =40 \\
t & =2 \\
15 t-15 & =5 t+5 \\
10 t & =20 \\
t & =2
\end{aligned}
$$

$\boldsymbol{r}_{F}(2)=\boldsymbol{r}_{G}(2)$, hence the ferries will collide when $t=2$. A collision will occur at 1:00 pm.

This model assumes there are no underlying currents that would affect the relative velocity of either ferry. It also assumes that the crew of both ferries are willing to continue travelling at a constant velocity despite the obvious dangers of an imminent collision. If these assumptions were incorrect, the ferries would not collide at 1:00 pm.

14 Using vector calculus to describe the motion of a particle

The position vector of a particle at time t is $\boldsymbol{r}=\cos (2 t) \hat{\boldsymbol{i}}+\sin (2 t) \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}, t \geq 0$.
(a) Calculate $\dot{\boldsymbol{r}}$ and $\ddot{\boldsymbol{r}}$.

THINKING

1 Differentiate each component with respect to t to calculate $\dot{\boldsymbol{r}}$.

2 Differentiate each component with respect to t to calculate $\ddot{\boldsymbol{r}}$.

WORKING

$$
\begin{aligned}
\boldsymbol{r} & =\cos (2 t) \hat{\boldsymbol{i}}+\sin (2 t) \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}} \\
\dot{\boldsymbol{r}} & =\left(\frac{d}{d t} \cos (2 t)\right) \hat{\boldsymbol{i}}+\left(\frac{d}{d t} \sin (2 t)\right) \hat{\boldsymbol{j}}+\left(\frac{d}{d t} \mathbf{1}\right) \hat{\boldsymbol{k}} \\
& =-2 \sin (2 t) \hat{\boldsymbol{i}}+2 \cos (2 t) \hat{\boldsymbol{j}}
\end{aligned}
$$

$$
\dot{\boldsymbol{r}}=-2 \sin (2 t) \hat{\boldsymbol{i}}+2 \cos (2 t) \hat{\boldsymbol{j}}
$$

$$
\ddot{\boldsymbol{r}}=-4 \cos (2 t) \hat{\boldsymbol{i}}-4 \sin (2 t) \hat{\boldsymbol{j}}
$$

(b) Prove that the speed of the body is constant.

1 Calculate $\mid \dot{\boldsymbol{r}}$.

$$
\begin{aligned}
\dot{\boldsymbol{r}} & =-2 \sin (2 t) \hat{\boldsymbol{i}}+2 \cos (2 t) \hat{\boldsymbol{j}} \\
|\dot{\boldsymbol{r}}| & =\sqrt{(-2 \sin (2 t))^{2}+(2 \cos (2 t))^{2}} \\
|\dot{\boldsymbol{r}}| & =\sqrt{4 \sin ^{2}(2 t)+4 \cos ^{2}(2 t)} \\
& =\sqrt{4\left(\sin ^{2}(2 t)+\cos ^{2}(2 t)\right)} \\
& =\sqrt{4} \\
& =2
\end{aligned}
$$

3 Write the conclusion.
As $|\dot{\boldsymbol{r}}|=2$, the speed of the body is constant.
(c) Prove that the particle's acceleration is always perpendicular to its direction of motion.

1 Vectors are perpendicular if their dot product is equal to zero.
Calculate $\ddot{\boldsymbol{r}} \cdot \dot{\boldsymbol{r}}$.

2 Demonstrate that $\ddot{\boldsymbol{r}} \cdot \dot{\boldsymbol{r}}=0$.

3 Write the conclusion.

$$
\begin{aligned}
& \ddot{\boldsymbol{r}}=-4 \cos (2 t) \hat{\boldsymbol{i}}-4 \sin (2 t) \hat{\boldsymbol{j}} \text { and } \dot{\boldsymbol{r}}=-2 \sin (2 t) \hat{\boldsymbol{i}}+2 \cos (2 t) \hat{\boldsymbol{j}} \\
& \ddot{\boldsymbol{r}} \cdot \dot{\boldsymbol{r}}=(-4 \cos (2 t) \hat{\boldsymbol{i}}-4 \sin (2 t) \hat{\boldsymbol{j}}) \cdot(-2 \sin (2 t) \hat{\boldsymbol{i}}+2 \cos (2 t) \hat{\boldsymbol{j}})
\end{aligned}
$$

$\ddot{\boldsymbol{r}} \cdot \dot{\boldsymbol{r}}=(-4 \cos (2 t))(-2 \sin (2 t))+(-4 \sin (2 t))(2 \cos (2 t))$
$=8 \sin (2 t) \cos (2 t)-8 \sin (2 t) \cos (2 t)$

$$
=0
$$

So $\ddot{\boldsymbol{r}} \perp \boldsymbol{r}$ since $\ddot{\boldsymbol{r}}, \dot{\boldsymbol{r}} \neq \mathbf{0}$.
Hence the particle's acceleration is always perpendicular to its direction of motion (the direction of $\dot{\boldsymbol{r}}$).

15 Calculating maximfmand minimum speeds of a particle

At time t, a particle has position vector $\boldsymbol{r}=(\cos (t)+\cos (2 t)) \hat{\boldsymbol{i}}+(\sin (t)+\sin (2 t)) \hat{\boldsymbol{j}}, t \geq 0$.
(a) Determine an expression for the speed of the particle.

THINKING

1 Differentiate each component with respect to t to calculate $\dot{\boldsymbol{r}}$.

2 Recall that speed (a scalar) is the magnitude of the velocity vector. Use $v=|\dot{r}|$ to determine the speed at time t.

WORKING

$$
\begin{aligned}
& \boldsymbol{r}=(\cos (t)+\cos (2 t)) \hat{\boldsymbol{i}}+(\sin (t)+\sin (2 t)) \hat{\boldsymbol{j}} \\
& \dot{\boldsymbol{r}}=(-\sin (t)-2 \sin (2 t)) \hat{\boldsymbol{i}}+(\cos (t)+2 \cos (2 t)) \hat{\boldsymbol{j}} \\
& \dot{\boldsymbol{r}}=(-\sin (t)-2 \sin (2 t)) \hat{\boldsymbol{i}}+(\cos (t)+2 \cos (2 t)) \hat{\boldsymbol{j}} \\
& v=\sqrt{\sin ^{2}(t)+4 \sin (t) \sin (2 t)+4 \sin ^{2}(2 t)} \\
&+\cos ^{2}(t)+4 \cos (t) \cos (2 t)+4 \cos ^{2}(2 t)
\end{aligned} ~ . ~
$$

3 Use the trigonometric identity
$\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ to simplify v.

$$
\begin{aligned}
v & =\sqrt{\left(\begin{array}{l}
\left.\sin ^{2}(t)+\cos ^{2}(t)\right)+4\left(\sin ^{2}(2 t)+\cos ^{2}(2 t)\right) \\
+4(\sin (t) \sin (2 t)+\cos (t) \cos (2 t))
\end{array}\right.} \\
& =\sqrt{1+4+4(\sin (t) \sin (2 t)+\cos (t) \cos (2 t))} \\
v & =\sqrt{1+4+4 \cos (2 t-t)} \\
& =\sqrt{5+4 \cos (t)} \\
v & =\sqrt{5+4 \cos (t)}
\end{aligned}
$$

4 Use the trigonometric identity $\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)$ to simplify v.

5 Write v in terms of t.
(b) Determine when the particle first attains its minimum and maximum speed.

1 The minimum speed occurs when $\cos (t)=-1 . \quad v=\sqrt{5+4 \cos (t)}$
The minimum value of v is 1 and occurs when $\cos (t)=-1$, i.e, when $t=\pi, 3 \pi, \ldots$
It follows that the minimum speed is 1 and is first attained at $t=\pi$.
2 The maximum speed occurs when $\cos (t)=1$. The maximum value of v is $\sqrt{9}=3$ and occurs when $\cos (t)=1$, i.e. when $t=0,2 \pi, \ldots$ It follows that the maximum speed is 3 and is first attained at $t=0$.

Anti-differentiation of vectorfunctions

Anti-differentiation is the reverse process to differentiation.
Like real (scalar) functions, vectorfunctions can be anti-differentiated.
For anti-differentiating vectors expressed in component form, use the following rule:
The result can be verified by differentiation.

$$
\begin{aligned}
\frac{d \boldsymbol{r}}{d t} & =\frac{d}{d t}\left(\int x d t\right) \hat{\boldsymbol{i}}+\frac{d}{d t}\left(\int y d t\right) \hat{\boldsymbol{j}}+\frac{d}{d t}\left(\int z d t\right) \hat{\boldsymbol{k}}+\frac{d \boldsymbol{c}}{d t} \\
& =x \hat{\boldsymbol{i}}+y \hat{\boldsymbol{j}}+z \hat{\boldsymbol{k}}+\mathbf{0} \\
& =x \hat{\boldsymbol{i}}+y \hat{\boldsymbol{j}}+z \hat{\boldsymbol{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \frac{d \boldsymbol{r}}{d t}=x \hat{\boldsymbol{i}}+y \hat{\boldsymbol{j}}+z \hat{\boldsymbol{k}}, \text { then: } \\
& \boldsymbol{r} \\
& =\int(x \hat{\boldsymbol{i}}+y \hat{\boldsymbol{j}}+z \hat{\boldsymbol{k}}) d t \\
& \\
& =\left(\int x d t\right) \hat{\boldsymbol{i}}+\left(\int y d t\right) \hat{\boldsymbol{j}}+\left(\int z d t\right) \hat{\boldsymbol{k}}+\boldsymbol{c}
\end{aligned}
$$

Note that when anti-differentiating a vector function, a vector constant (\boldsymbol{c}) is introduced.
Extra information, such as an initial condition, is needed to determine the value of the vector constant, \boldsymbol{c} specifically.

16 Determining a position vector from a velocity vector

The velocity of a particle at time t is given by $\dot{\boldsymbol{r}}=\hat{\boldsymbol{i}}+(2 t+2) \hat{\boldsymbol{j}}, t \geq 0$. Determine its position vector when $t=1$, if $\boldsymbol{r}=\hat{\boldsymbol{i}}$ when $t=0$.

THINKING

1 Anti-differentiate each component with respect to t to calculate r.

WORKING

$\frac{d \boldsymbol{r}}{d t}=\hat{\boldsymbol{i}}+(2 t+2) \hat{\boldsymbol{j}}$
$\boldsymbol{r}=\int(\hat{\boldsymbol{i}}+(2 t+2) \hat{\boldsymbol{j}}) d t$

$$
=t \hat{\boldsymbol{i}}+\left(t^{2}+2 t\right) \hat{\boldsymbol{j}}+\boldsymbol{c}
$$

2 Apply the initial condition to determine \boldsymbol{c}.
3 Write the position vector \boldsymbol{r}.

4 Calculate \boldsymbol{r} when $t=1$.
$\boldsymbol{r}(0)=\hat{\boldsymbol{i}}$ and so $\boldsymbol{c}=\hat{\boldsymbol{i}}$.
$\boldsymbol{r}=(t+1) \hat{\boldsymbol{i}}+\left(t^{2}+2 t\right) \hat{\boldsymbol{j}}$
$r(1)=2 \hat{\boldsymbol{i}}+3 \hat{\boldsymbol{j}}$

To calculate the position vector \boldsymbol{r} given $\ddot{\boldsymbol{r}}$, anti-differentiate once to determine $\dot{\boldsymbol{r}}$ and then again to get \boldsymbol{r}.

17 Sketching the path of a particle given its acceleration vectior

The acceleration of a particle at time t is given by $\ddot{\boldsymbol{r}}=-10 \hat{\boldsymbol{j}}, t \geq 0$. Sketch the path of the particle if $\dot{\boldsymbol{r}}=\hat{\boldsymbol{i}}-5 \hat{\boldsymbol{j}}$ and $\boldsymbol{r}=0$ when $t=0$.

THINKING

1 Anti-differentiate each component with respect to t to calculate $\dot{\boldsymbol{r}}$.

2 Apply the initial condition to determine the constant vector \boldsymbol{c}.

WORKING

$\ddot{\boldsymbol{r}}=-10 \hat{\boldsymbol{j}}$
$\dot{r}=-10 \hat{\boldsymbol{j}}+\boldsymbol{c}$
At $t=0$:
$\dot{\boldsymbol{r}}=\hat{\boldsymbol{i}}-5 \hat{\boldsymbol{j}}$
Hence $\boldsymbol{c}=\hat{\boldsymbol{i}}-5 \hat{\boldsymbol{j}}$.

3 Anti-differentiate each component with respect to t to calculate r.
$\dot{\boldsymbol{r}}=\hat{\boldsymbol{i}}-(10 t+5) \hat{\boldsymbol{j}}$
$\boldsymbol{r}=t \hat{\boldsymbol{i}}-\left(5 t^{2}+5 t\right) \hat{\boldsymbol{j}}+\boldsymbol{d}$

At $t=0$:
$r=0$
Hence $\boldsymbol{d}=\mathbf{0}$.
5 Write the position vector \boldsymbol{r}.
6 To sketch the path, convert the position vector into Cartesian form. Write and number the parametric equations.
$\boldsymbol{r}=t \hat{\boldsymbol{i}}-\left(5 t^{2}+5 t\right) \hat{\boldsymbol{j}}$
$x=t$
$y=-\left(5 t^{2}+5 t\right)$

7 Determine the possible values of x.
8 Substitute into the other parametric equation to eliminate t.

9 Write the Cartesian equation with domain.

10 Sketch the path of the particle with correct domain.

If $t \geq 0$ and $x=t$ then $x \geq 0$.
$y=-\left(5 x^{2}+5 x\right)$
So $y=-5 x(x+1)$.
The Cartesian equation is $y=-5 x(x+1)$, $x \geq 0$.

EXERCISE

3.3
 Velocity and acceleration vectors

Technology worked example

Sketching the path of a particicle

1 Determine an expression for the velocity at time t for a particle that moves so that its position vector at time t is given by:
(a) $\boldsymbol{r}=(t+1) \hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$
(b) $\boldsymbol{r}=\hat{\boldsymbol{i}}+\left(t^{2}-1\right) \hat{\boldsymbol{j}}$

2 Determine an expression for the acceleration at time t for a particle that moves so that its velocity vector at time t is given by:
(a) $\boldsymbol{v}=\hat{\boldsymbol{i}}-2 t^{2} \hat{\boldsymbol{j}}$
(b) $\boldsymbol{v}=(15-10 t) \hat{\boldsymbol{j}}$

3 Determine $\dot{\boldsymbol{r}}$ and $\ddot{\boldsymbol{r}}$ for each of the following equations.
(a) $\boldsymbol{r}=4 t \hat{\boldsymbol{i}}-\left(t^{2}-2\right) \hat{\boldsymbol{j}}+3 t^{2} \hat{\boldsymbol{k}}$
(b) $\boldsymbol{r}=26 t \hat{\boldsymbol{i}}+5\left(3 t-t^{2}\right) \hat{\boldsymbol{j}}$
(c) $\boldsymbol{r}=4 \cos (2 t) \hat{\boldsymbol{i}}+3 \sin (2 t) \hat{\boldsymbol{j}}$
(d) $\boldsymbol{r}=e^{t} \hat{\boldsymbol{i}}+\left(e^{-2 t}+1\right) \hat{\boldsymbol{j}}-t^{3} \hat{\boldsymbol{k}}$

4 A particle moves so that its position vector at time t is given by $\boldsymbol{r}=2 \cos (t) \hat{\boldsymbol{i}}+3 \sin (t) \hat{\boldsymbol{j}}-4 \hat{\boldsymbol{k}}$. Calculate the initial speed of the particle.
5 A particle moves so that at time $t \geq 0$, its position vector is given by $\boldsymbol{r}=\left(t^{3}-t\right) \hat{\boldsymbol{i}}+(2 t-1)^{3} \hat{\boldsymbol{j}}$. At $t=1$, the magnitude of the particle's acceleration is:
A $2 \hat{i}+6 \hat{\boldsymbol{j}}$
B $2 \sqrt{10}$
C $6 \hat{\boldsymbol{i}}+24 \hat{\boldsymbol{j}}$
D $6 \sqrt{17}$

6 Calculate the position vector \boldsymbol{r} if:
(a) $\dot{\boldsymbol{r}}=4 t \hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}, \boldsymbol{r}=\hat{\boldsymbol{j}}$ at $t=0$.
(b) $\dot{\boldsymbol{r}}=-2 \sin (2 t) \hat{\boldsymbol{i}}+2 \cos (2 t) \hat{\boldsymbol{j}}, \boldsymbol{r}=\hat{\boldsymbol{i}}+\hat{\boldsymbol{k}}$ at $t=0$.
(c) $\ddot{\boldsymbol{r}}=-10 \hat{\boldsymbol{j}}, \boldsymbol{r}=\mathbf{0}$ and $\dot{\boldsymbol{r}}=20 \hat{\boldsymbol{i}}+20 \hat{\boldsymbol{j}}$ at $t=0$.

7 Two snooker balls, the white ball and the black ball, simultaneously rebound slowly off adjacent cushions of a snooker table. Immediately after rebounding, their position and velocity vectors relative to a corner of the table are:
$\boldsymbol{r}_{W}=0.5 \hat{\boldsymbol{i}} \quad \boldsymbol{v}_{W}=\hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}$
$\boldsymbol{r}_{B}=1.5 \hat{\boldsymbol{j}} \quad \boldsymbol{v}_{B}=2 \hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}$
where distance is measured in metres and time in seconds.
(a) Prove that the paths of the two balls cross at right angles.
(b) Calculate how long after rebounding the balls collide.
(c) Identify any assumptions made in parts (a) and (b) and discuss the effects of these assumptions on your answer.

8 The position vector of a particle at time t is given by $\boldsymbol{r}=\sqrt{2} \cos (n t) \hat{\boldsymbol{i}}+\sin (n t) \hat{\boldsymbol{j}}+\sin (n t) \hat{\boldsymbol{k}}$, where n is a positive constant.
(a) Prove that the particle moves with constant speed.
(b) Prove that its acceleration is always perpendicular to its velocity.

9 A particle moves so that its position vector at time t is given by $\boldsymbol{r}=\left(e^{-t} \sin (t)\right) \hat{\boldsymbol{i}}+\left(e^{-t} \cos (t)\right) \hat{\boldsymbol{j}}, t \geq 0$.
(a) Determine an expression for the particle's velocity.
(b) Determine an expression for the particle's speed.
(c) Determine an expression for the particle's acceleration.

10 At time t, a particle has position vector $\boldsymbol{r}=(3 \sin (t)+\sin (2 t)) \hat{\boldsymbol{i}}+(3 \cos (t)-\cos (2 t)) \hat{\boldsymbol{j}}+t \hat{\boldsymbol{k}}, t \geq 0$.
(a) Calculate the maximum and minimum speeds of the particle.
(b) Calculate the magnitude of its acceleration at $t=\frac{\pi}{2}$.

11 A particle moves so that at time $t>0$, its position vector is given by $\boldsymbol{r}=\ln \left(t^{2}+2 t\right) \hat{\boldsymbol{i}}+2 t^{2} \hat{\boldsymbol{j}}$. Calculate the particle's velocity vector at $t=2$.

12 The acceleration of a particle moving in a plane is constant and is given by $\ddot{\boldsymbol{r}}=18 \hat{\boldsymbol{i}}$. At $t=0$, $\dot{\boldsymbol{r}}=6 \hat{\boldsymbol{i}}+3 \hat{\boldsymbol{j}}$ and $\boldsymbol{r}=\mathbf{0}$. Calculate the velocity and the position of the particle at $t=1$.

13 The acceleration of a particle at time t is given by $\ddot{\boldsymbol{r}}=e^{t} \hat{\boldsymbol{i}}+e^{-t} \hat{\boldsymbol{j}}+6 t \hat{\boldsymbol{k}}$. Calculate the particle's velocity and position at time t if $\dot{\boldsymbol{r}}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$ and $\boldsymbol{r}=2 \hat{\boldsymbol{j}}$ at $t=0$.

14 The acceleration at time t seconds of a particle moving in a straight line is $\ddot{\boldsymbol{x}}=(4-6 t) \hat{\boldsymbol{i}} \mathrm{m} / \mathrm{s}^{2}$. The particle starts its motion 16 metres to the right of a fixed point O and moves away from O at a speed of $4 \mathrm{~m} / \mathrm{s}$.
(a) Determine the position where the particle is instantaneously at rest, relative to O.
(b) Determine when the particle passes through O.

15 A body moves from rest at the origin so that after t seconds its acceleration is given by $\ddot{\boldsymbol{r}}=10 \hat{\boldsymbol{i}}+e^{-0.1 t} \hat{\boldsymbol{j}} \mathrm{~m} / \mathrm{s}^{2}$.
(a) Calculate its velocity after t seconds.
(b) Calculate its position vector at $t=10$.

16 A particle moves so that its position vector at time t is $\boldsymbol{r}=t^{2} \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}, t \geq 0$.
(a) Determine an expression for the velocity at time t.
(b) Calculate the speed and direction of the particle at $t=2$.
(c) Determine an expression for the acceleration at time t.
(d) Resolve the acceleration vector at $t=1$ into tangential and normal components.
(e) At what angle to its direction of motion is the particle accelerating at $t=0$ and $t=1$?

17 A child is sitting still in some long grass watching a bee. The bee flies at constant speed in a straight line from its beehive to a flower and reaches the flower 3 seconds later. Theposition vector of the beehive relative to the child is $10 \hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}+6 \hat{\boldsymbol{k}}$ and the position vector of the flower relative to the child is $7 \hat{\boldsymbol{i}}+8 \hat{\mathbf{j}}$, where all distances are measured in metres.
(a) Calculate the speed of the bee.
(b) Calculate a unit vector in the direction of motion of the bee.
(c) Calculate the velocity of the bee.
(d) Calculate the closest distance that the bee comes to the child. Express your answer correct to one decimal place.

18 The velocity of a golf ball, t seconds, after being hit from a tee, is given by $\dot{\boldsymbol{r}}=10 \hat{\boldsymbol{i}}+(20-10 t) \hat{\boldsymbol{j}} \mathrm{m} / \mathrm{s}$ where $\hat{\boldsymbol{i}}$ is a unit vector in the horizontal direction of the green and $\hat{\boldsymbol{j}}$ is a unit vector vertically upward.
(a) Calculate the initial speed and the angle of projection of the ball. Give your answers correct to one decimal place.
(b) Determine when the ball's velocity is horizontal.
(c) Taking the tee as the origin, determine an expression for the position vector \boldsymbol{r} of the ball at time t seconds.
(d) Calculate the maximum height reached by the ball. Identify any assumptions and comment on the effect of these assumptions on your solution.

19 At time t, a particle has velocity $\boldsymbol{v}=2 \cos (t) \hat{\boldsymbol{i}}-4 \sin (t) \cos (t) \hat{\boldsymbol{j}}, t \geq 0$. At time $t=0, \boldsymbol{r}=3 \hat{\boldsymbol{j}}$.
(a) Calculate the displacement of the particle at any time t.
(b) Calculate the displacement of the particle when it first comes to rest.
(c) Determine the Cartesian equation of the path and sketch the path of the particle.
(d) Determine the maximum speed attained by the particle.

