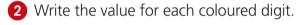


Numbers Above One Million

Millions
Hundred thousands
Thousands
Hundreds Hundred millions Ten millions

237649105


after the

after the

thousands.

- 1 Use numerals to write:
 - a forty-nine million seven hundred and sixty thousand six hundred and twenty-one
 - **b** eighty-three million one hundred and thirty-two thousand five hundred and forty-nine

- a 37468901
- **b** 23674768

c 431**6**9235

d 96347607

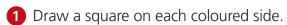
e 67911213

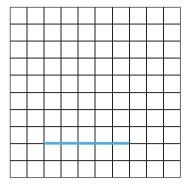
- 16**5**273406
- 3 Arrange each group of numbers in ascending order.
 - **a** 26349721 62419637
- 43296714

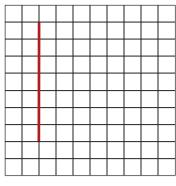
- **b** 65375670
- 63497624
- 56811769

- c 32693475
- 41623912
- 17634658
- 4 Is each number below closer to 30000000 or 40000000?
 - a 32645762

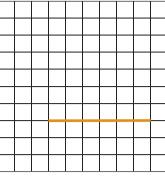
- **b** 34177624
- c 36396408




5 a Use the digits 1, 2, 3, 4, 5, 6, 7. Write one digit in each space so that all the lines add up to the same sum.

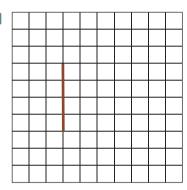


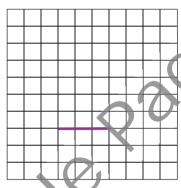
- **b** Use the digits 1, 2, 3, 4, 5, 6. Write one digit in each space so that the sum of the numbers along each side is the same.
- c Use the digits 1, 2, 3, 4, 6, 7, 8, 9. Write one digit in each space so that the sum of the numbers along each side is the same.

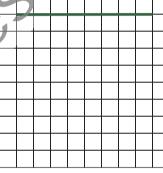


C

Area of blue square




Area of red square



Area of orange square

Area of brown square

Area of purple square

Area of green square

The result of multiplying a counting number by itself is called a square number.

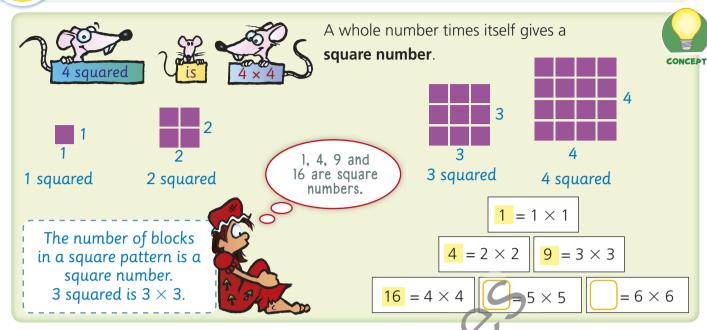
CONCEPT

2 a Here we have 3 rows of 3 counters.

$$3 \times 3 =$$

b What shape does this array look like?

c Make square arrays using 4, 9, 16 and 25 counters.


4 Use a calculator to find at least seven more square numbers.

5 Explain why the numbers 1, 4, 9, 16, ... are called square numbers.

03 Square Numbers

- 1 Use place-value blocks to find these square numbers.
 - a 5 squared =
- **b** 6 squared =
- **c** 7 squared =

- **d** 8 squared =
- e 9 squared =

f 10 squared =

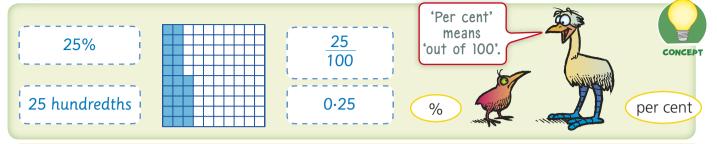
- g 2 × 2 =
- **h** $4 \times 4 =$
- $\mathbf{i} \quad 7 \times 7 =$
- $\mathbf{j} \quad 3 \times 3 = \left(\right)$

- k 6 × 6 =
- $10 \times 10 =$
- $m 1 \times 1 =$

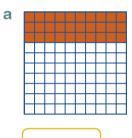
49

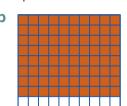
 $n 8 \times 8 =$

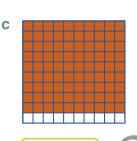
- 2 Look carefully at the first ten square numbers below.
 - 1 4 9
- 16
- 36
- 64
- 81 100

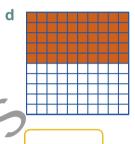

and

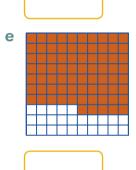
- a Complete the pattern shown here.
- **b** Write down the next two square numbers after 100.
- c Write down the square numbers from those above that are also even.
 - Each factor is written only once.

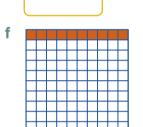



- $\mathbf{a} 9 = \begin{bmatrix} \\ \\ \end{bmatrix}$ squared
- **b** 25 = squared
- c 16 = squared
- d 36 = squared
- 4 Use blocks to find all factors of:
 - **a** 25: , and **b** 9: , and **c** 49:
 - **d** 4: , and **e** 16: , , and


1904 Percentages




1 What percentage of each square is coloured?





2 What percentage of each square is not coloured in Question 1?

а	

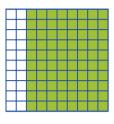
3 Complete the following.

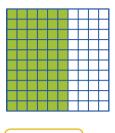
а	0.25	100	%
d	0.75	100	%
g	0.90	100	%

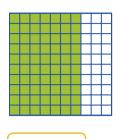
b	0.35	100	%	
е	0.15	100	%	
h	0.40		%	

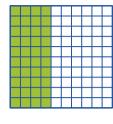
g

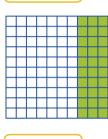
C	0.65	100	%
f	0.55	100	%
i	0.80	100	%

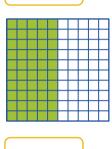

Percentages in the Environment

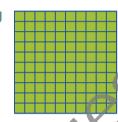

- Collect examples of percentages from newspapers and packets.
- Discuss the different ways in which percentages are used.

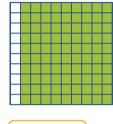




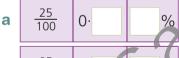


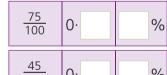



C



2 What percentage of each square is not coloured in Question 1?




1		
	\succeq	= <
1		

3 Complete the following.

0.

100		
<u>65</u> 100	0.	%

Do them like this.

g

<u>4</u> 10

9 10	0-	%

l	<u>3</u> 10	0.	%
	<u>5</u> 10	0.	%

100	0.	70
7 10	0.	%
1	.0	%

0.3

0.65

0.4

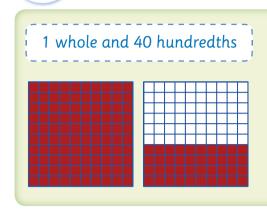
4 Draw lines to connect the equivalent numbers.

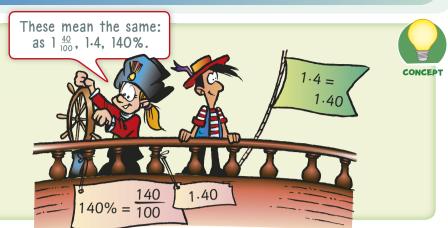
а	0.25	45%
	0.5	60%
	0.45	25%
	0.6	50%

)	0.7	55%
	0.55	70%
	0.8	95%
	0.95	80%

С	0.35	85%
	0.1	90%
	0.85	10%
	0.9	35%

%	•		\$
%	$\frac{1}{10}$	0.1	10%
%			
			_


65%


40%

30%

100%

Percentages

1 Write the percentage equivalent for each common fraction.

<u>9</u> 10

65 100

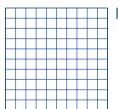
- <u>3</u> 10

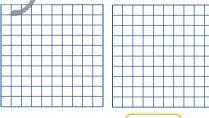
- 75 100 C

35 100

- d
- <u>6</u> 10
- <u>25</u> 100
 - <u>1</u>

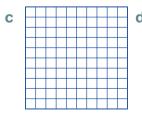
- 2 Write the percentage equivalent for each decimal.
 - **a** 0.15
- **b** 0.45
- **c** 0.85
- 1.55
- e 2.95


- 1.8
- **g** 0.2
- h 2.7
- 1.1
- 0.05

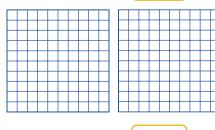

- 3 Write the decimal equivalent for each percentage.
 - **a** 25%
- **b** 40%
- 290%
- **d** 75%
- e 10%

- f 35%
- **g** 25%
- h 165%
- 5%
- j 115%

4 For each square, coldur and write the equivalent percentage.



- 0.3
- %


%

- 1.15 =
- %

%

0.89 =

- - 1.7

Learn these facts

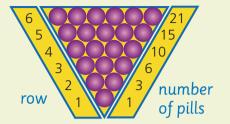
$$\frac{1}{2} = 50\% = 0.5$$

$$\frac{1}{4} = 25\% = 0.25$$
 $\frac{3}{4} = 75\% = 0.75$

$$\frac{1}{10} = 10\% = 0.1$$

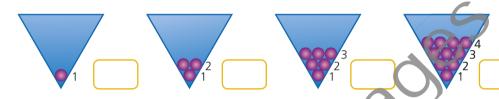
$$\frac{2}{10} = 20\% = 0.2$$

$$1 = 100\% = 1.0$$


$$1\frac{1}{2} = 150\% = 1.5$$

Triangular Numbers

A triangular number is the sum of counting numbers, starting from 1, e.g. 1 + 2 + 3 + 4 = 10.


If the pills form a triangle, the number of pills is a triangular number.

Other triangular numbers:

Triangular number	Pattern									
28	1 + 2 + 3 + 4 + 5 + 6 + 7									
36	1 + 2 + 3 + 4 + 5 + 6 + 7 + 8									
45	1+2+3+4+5+6+7+8+9									

Chemists used to count pills in triangular pill trays.

1 How many pills are in each of these pill trays?

2 How many counting numbers were added to give the triangular number:

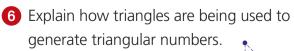
- **a** 10?
- **b** 36?

- 6?
- d 45?

d 28 and 36

What is the triangular number found by adding the first:

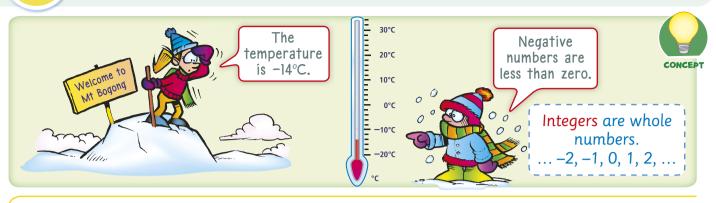
- **b** 10 counting numbers?
- c 11 counting numbers?

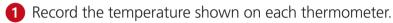

4 Add these consecutive triangular numbers. (Consecutive means 'following one after the other'.)

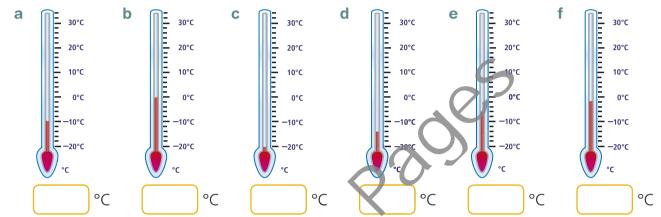
c 21 and 28

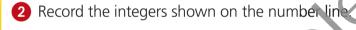
- d 12 counting numbers?
- e 13 counting numbers?
- 5 What is the result when two consecutive triangular numbers are added?

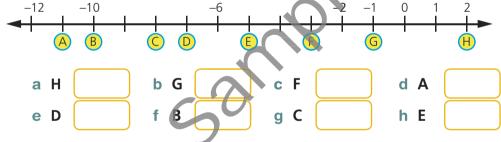

b 15 and 21

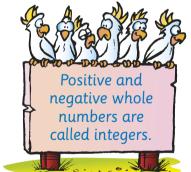

a 10 and 15

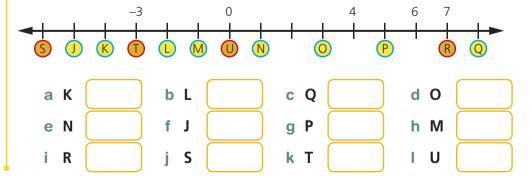




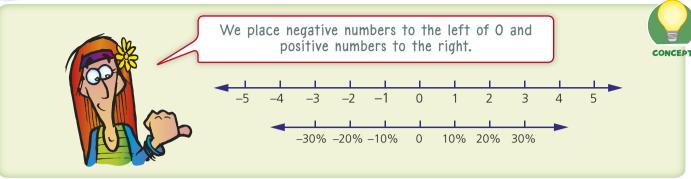



Negative Numbers

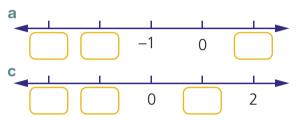


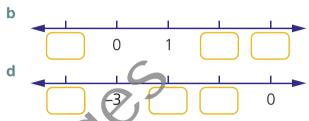


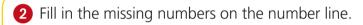
Record the integers shown on the number line.

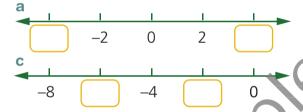

4 Using a calculator, start from 3 and continue to take away 1.

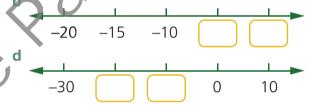
Use the internet to find places that have had negative temperatures. Record your findings.

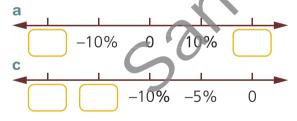



Positive and Negative Numbers





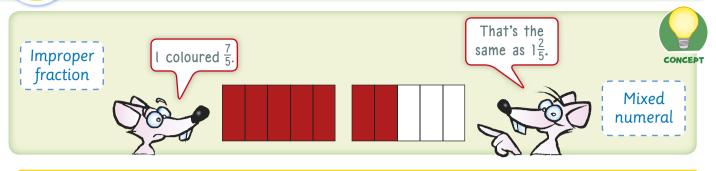

1 Fill in the missing numbers on the number line.

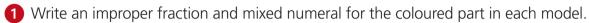


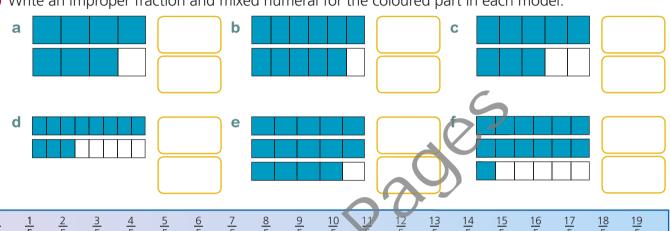
3 Fill in the missing percentages on the number line.

Positive and Negative Integers Game

• The goal is to reach –20 on the number line.


- Each player starts at 4 on the number line. Take turns to roll two dice.
- An odd number can be used to move left, an even number to move right. The other dice represents how far you move along the number line.

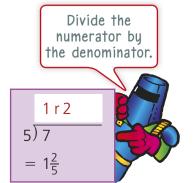

Example: and a can mean: 'move 4 to the left' or 'move 5 to the right'.



Improper Fractions and Mixed Numerals

	5	5	5	5	5	5	5	5	5	<u>5</u> <u>5</u> 5	5	5	5	5	5	5	5	5	5
	0	<u>1</u> 5	<u>2</u> 5	<u>3</u> 5	<u>4</u> 5	1	$1\frac{1}{5}$	1 ² / ₅	1 3/5	$1\frac{4}{5}$	$2\frac{1}{5}$	$2\frac{2}{5}$	$2\frac{3}{5}$	2 4 /5	3	3 1 /5	3 ² / ₅	3 ³ / ₅	3 4 / ₅
,																			

2 Use the number line above to write the mixed numeral for:


- **a** $\frac{6}{5}$ **b** $\frac{11}{5}$ **c** $\frac{9}{5}$ **d** $\frac{13}{5}$ **e** $\frac{16}{5}$
- f $\frac{12}{5}$ g $\frac{17}{5}$ h $\frac{7}{5}$ i $\frac{9}{5}$ j $\frac{8}{5}$

3 Use the number line to write the improper fraction for:

- **a** $1\frac{4}{5}$ **b** $2\frac{3}{5}$ **c** $3\frac{2}{5}$ **d** $1\frac{1}{5}$ **e** $2\frac{2}{5}$
- f $3\frac{1}{5}$ g $1\frac{2}{5}$ h $2\frac{1}{5}$ i $3\frac{4}{5}$ j $1\frac{3}{5}$

4 Write the mixed numeral for:

- **a** $\frac{5}{4}$ **b** $\frac{13}{10}$ **c** $\frac{9}{8}$
- d $\frac{7}{6}$ e $\frac{9}{4}$ f $\frac{17}{10}$
- g $\frac{11}{8}$ h $\frac{13}{12}$ i $\frac{13}{8}$
- j $\frac{11}{4}$ k $\frac{17}{6}$ l $\frac{17}{12}$

