PEARSON MATHEMATIGAL METHODS QUEENSLAND

EXAM PREPARATION WORKBOOK

PEARSON

UNITS 3\&4

QUEENSLAND

About this Pearson Mathematical Methods 12 Exam Preparation Workbook

The purpose of the Pearson Exam Preparation Workbook is to assist students in their preparation for the QCAA external exams. Answering previous external exam questions is an effective way to do this, as it offers well-constructed questions at the appropriate level.
This Pearson Exam Preparation Workbook includes previous external exam questions from Victoria. Given that both the syllabuses and the access to allowed technologies varies across the states, the author has reviewed questions from years 2000 to 2017 to select those questions that align with the QCAA syllabus.
These questions were then categorised using the QCAA three levels of difficulty: simple familiar, complex familiar and complex unfamiliar. This matches the QCAA external exam structure, which indicates that in Paper 1 and Paper 2, marks will be allocated in the following approximate proportions:

- 60% simple familiar
- 20% complex familiar
- 20% complex unfamiliar.

The source of each question in the Pearson Exam Preparation Workbook is referenced at the start of the question. At times, there may be some variation between the notation used in the questions and that used by the QCAA; the authors have made note of this within the worked solution as applicable.
Each worked solution has indicative mark allocations. As official marking schemes are not released by state examining bodies, the mark allocations in the Pearson Exam
Preparation Workbook are based on the author's and reviewer's on-balance judgement and their teaching experience.

Writing and development team

We are grateful to the following people for their time and expertise in contributing to Pearson Mathematical Methods 12 Exam Preparation Workbook.

Nigel Treloar

Mathematics teacher, QLD
Author

Antje Leigh-Lancaster

Lead publisher
Portfolio Manager for K12 Mathematics
Pearson Australia

Lindy Bayles

Mathematics teacher, VIC
Development editor

Rodney Anderson

Mathematics teacher, QLD
Answer checker
Daniel Hernandez Navas
Publisher
Content and learning specialist
Pearson Australia

How to use this workbook

Pearson Mathematical Methods 12 Queensland Exam Preparation Workbook, Units 3 \& 4

This exam preparation workbook has been developed to assist students in their preparation for the QCAA external exams. It provides previous external exam questions from Victoria that align with the QCAA syllabus. All questions are categorised into the QCAA three levels of difficulty-simple familiar, complex familiar and complex unfamiliar-to match the QCAA external exam structure.
The questions have been grouped into convenient sets, with the intention that each question set is tackled in one sitting.

Levels of difficulty

Levels of difficulty are indicated using a three-striped label.
Simple familiar: E Complex familiar:
Complex unfamiliar: \equiv
These are used in two ways:
1 To show the level of difficulty for the whole question se
2 To show the level of difficulty of individual question parts when they differ from that of the question set level. In such cases, all parts of that question are labelled.

Technology-free questions

Questions to be completed without the use of any technology will have a crossed-out calculator image beside them:

Set 12 Complex familiar exam questions

Get yourself exam ready using this 5-step preparation sequence

Step 1: Key areas of knowledge

The purpose of making these notes is to first identify what is required to be done, and how it might be done, without doing it at this stage.
For each question, note the topic(s) of mathematics it draws on, formulas you think will be needed, and any other comments you feel will help you work out the answer. Then move on to the next question in that set.

Step 2: Complete questions

Complete all the questions within the question set using the space provided.
Question sets have been structured according to level of difficulty, with each question set covering a range of topics from the syllabus.

Step 3: Check your answer

Review and mark your answers according to the solutions provided in the corresponding worked solutions.

Step 4: Examination report and reflection

Review the marks obtained from past students, read the information in the Examination report section (where available) and reflect on your own solution.
Use the Notes and pointers section to write down any relevant key reminders to yourself about common errors,
 key rules etc.

Step 5: Self-reflection: Question set notes and pointers summary

Reflect on all the questions within one set, review your comments in the individual Notes and pointers sections, and use these to complete a summary of the overall question set.
Use the Red, Amber and Green categories to note what you need to revise or don't understand, what you need to watch out for, and what you did well.
Once all sets are completed, these summaries will help in giving you direction on where to focus your further revision.

Contents

About this Exam Preparation Workbook	iii
Writing and development team	iii
How to use this workbook	iv

Self-reflection: Question set notes and pointers summary
Summary of sets 1-5 1
Summary of sets 6-10 2
Summary of sets 11-15 3
Summary of sets 16-20 4
Simple familiar question sets
Question Set 1 5
Worked solutions Set 1 8
Question Set 2 14
Worked solutions Set 2 17
Question Set 3 22
Worked solutions Set 3 26Question Set 431
Worked solutions Set 4 34
Question Set 5 38
Worked solutions Set 5 42
Question Set 6 47
Worked solutions Set 6 52
Question Set 7 60
Worked solutions Set 7 64
Question Set 8 69
Worked solutions Set 8
Complex familiar question sets
Question Set 9 78
Worked solutions Set 9 81
Question Set 10 86
Worked solutions Set 10 91
Question Set 11 98
Worked solutions Set 11 101
Question Set 12 106
Worked solutions Set 12 110
Question Set 13 116
Worked solutions Set 13 121
Question Set 14 129
Worked'solutions Set 14 134
Question Set 15 141
Worked solutions Set 15 148
Complex unfamiliar question sets
Question Set 16 158
Worked solutions Set 16 165
Question Set 17 173
Worked solutions Set 17 177
Question Set 18 184
Worked solutions Set 18 189
Question Set 19 196
Worked solutions Set 19 201
Question Set 20 211
Worked solutions Set 20 218

Set 2
 Simple familiar exam questions

Key areas of knowledge

11 mark, 1.5 minutes
[Question 9 from Section 1 VCE Mathematical Methods (CAS) Examination 2, 2011, illustrations redrawn]
The graph of the function $y=f(x)$ is shown below.

Which of the following could be the graph of the derivative function $y=f^{\prime}(x)$?

A

B

D

24 marks, 6 minutes
[Question 5 from VCE Mathematical Methods Examination 1, 2013]
(a) Solve the equation $2 \log _{3}(5)-\log _{3}(2)+\log _{3}(x)=2$ for x.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Solve the equation $3^{-4 x}=9^{6-x}$ for x.

Key areas of knowledge \square 2
\qquad
\qquad
\qquad
\qquad
\qquad

33 marks, 4.5 minutes
[Question 2 from VCE Mathematical Methods (CAS) Examination 1, 2015]
Let $f^{\prime}(x)=1-\frac{3}{x}$, where $x>0$.
Given that $f(e)=-2$, find $f(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

45 marks, 7.5 minutes

[Question 5 from VCE Mathematical Methods (CAS) Examination 1, 2014]
Consider the function $f(x)=3 x^{2}-x^{3}$, where $x \in[-1,3]$.
(a) Find the coordinates of the stationarypoints of the function.
(b) Find the area enclosed by the graph of the function and the horizontal line given by $y=4$.
\qquad

Key areas of knowledge

51 mark, 1.5 minutes
[Module 2: Question 2 from Section B VCE Further Mathematics Examination 1, 2013, illustrations redrawn]
The distances from a kiosk to points A and B on opposite sides of a pond are found to be 12.6 m and 19.2 m respectively.

The angle between the lines joining these points to the kiosk is 63°.
The distance, in m , across the pond between points A and B can be found by evaluating

A $\frac{1}{2} \times 12.6 \times 19.2 \times \sin \left(63^{\circ}\right)$
B $\frac{19.2 \times \sin \left(63^{\circ}\right)}{12.6}$
C $\sqrt{12.6^{2}+19.2^{2}}$
D $\sqrt{12.6^{2}+19.2^{2}-2 \times 12.6 \times 19.2 \times \cos \left(63^{\circ}\right)}$
E $\sqrt{s(s-12.6)(s-19.2)(s-63)}$, where $S=\frac{1}{2}(12.6+10.2+63) \quad$ My mark:

65 marks, 7.5 minutes

[Question 4 from VCE Mathematical Methods Examination 1, 2008]
The function

$$
f(x)= \begin{cases}k \sin (\pi x) & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

is a probability density function for the continuous random variable X.
(a) Show that $k=\frac{\pi}{2}$.
(b) Find $P\left(\left.X \leq \frac{1}{4} \right\rvert\, X \leq \frac{1}{2}\right)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simple familiar worked solutions and examination report

Examination report comments

\% A	\% B	\% C	\% D	\% E	\% No Answer
7	77	6	7	2	0

Correct option is \mathbf{B}.

Notes and pointers
\square

Worked solutions

Marks

1 In the following diagram, observing the behaviour of the graph from left to right, it can be seen that the value of the gradient of a tangent to the curve at any point changes. For $x<-3$ the gradient changes from positive to a turning point (zero) at $x=-3$, then negative between $-3<x<0$ to a stationary point of inflection (zero) again at $x=0$, and finally to an increasingly negative gradient for $x>0$.

2 (a) For the expression $\log _{3}(x)$ to exist, $x>0$:

$$
\begin{aligned}
2 \log _{3}(5)-\log _{3}(2)+\log _{3}(x) & =2 \\
\log _{3}\left(5^{2}\right)-\log _{3}(2)+\log _{3}(x) & =2 \\
\log _{3}\left(\frac{5^{2}}{2}\right)+\log _{3}(x) & =2 \\
\log _{3}\left(\frac{25 x}{2}\right) & =2 \\
\frac{25 x}{2} & =3^{2} \\
25 x & =18 \\
x & =\frac{18}{25}
\end{aligned}
$$

Given that $x>0$, the solution is reasonable.

Marks	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	Average
$\%$	14	23	64	1.5

The majority of incorrect responses involved $9=3^{3}$.
1 mark for correct exponential equation with the same base

1 mark for the correct answer

Notes and pointers

\square
\square

Marks	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Average
$\%$	14	14	21	51	2.1

Most students identified that the antiderivative involved a logarithmic expression. Evaluation of the constant of antidifferentiation caused some difficulties.

1 mark for a correct integral with or without the constant of integration
1 mark for $c=1-e$
1 mark for the correct answer

Notes and pointers

Marks	0	1	2	Average
$\%$	14	20	66	1.5

Students must be vigilant in ensuring they answer the specific question. In this question, coordinates were required and not simply x-values. Some students omitted the turning point $(0,0)$ and others incorrectly found the x-intercepts.

1 mark for correct x-values
1 mark for correct coordinates

Notes and pointers

\square
\square

Worked solutions

Marks

(b) Find a common exponential base for both sides of the equation. In this case it is 3 .
$3^{-4 x}=9^{6-x}$
$3^{-4 x}=\left(3^{2}\right)^{6-x}$
$3^{-4 x}=3^{12-2 x}$

Given that the bases are equal, equate the exponents:
$-4 x=12-2 x$
$-2 x=12$
$x=-6$
$3 f(x)=\int\left(1-\frac{3}{x}\right) d x$

$$
=x-3 \log _{e}(x)+c, x>0
$$

$$
f(e)=-2
$$

$$
-2=e-3 \log _{e}(e)+
$$

$$
-2=e-3+c
$$

$$
c=-2+3-
$$

$$
c=1-e
$$

Therefore: $f(x)=x-3 \log _{e}(x)+1-e, x>0$

4 (a) $f^{\prime}(x)=6 x-3 x^{2}$ and for stationary points $f^{\prime}(x)=0$.
Hence:

$$
\begin{aligned}
f^{\prime}(x) & =3 x(2-x) \\
3 x(2-x) & =0 \\
x & =0 \text { or } x=2
\end{aligned}
$$

At $x=0$,

$$
\begin{aligned}
f(0) & =3(0)^{2}-(0)^{3} \\
& =0
\end{aligned}
$$

At $x=2$,

$$
\begin{aligned}
f(2) & =3(2)^{2}-(2)^{3} \\
& =12-8 \\
& =4
\end{aligned}
$$

The coordinates of the stationary points are $(0,0)$ and $(2,4)$.

Marks	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Average
$\%$	25	27	27	21	1.5

Method 1

$$
\begin{aligned}
\text { Area } & =12-\int_{-1}^{2}\left(3 x^{2}-x^{3}\right) d x \\
& =12-\left[x^{3}-\frac{x^{4}}{4}\right]_{-1}^{2} \\
& =12-\left[(8-4)-\left(-1-\frac{1}{4}\right)\right] \\
& =6 \frac{3}{4}\left(\text { or } \frac{27}{4} \text { or } 6.75\right)
\end{aligned}
$$

Method 2

$$
\begin{aligned}
\int_{-1}^{2}\left(4-\left(3 x^{2}-x^{3}\right)\right) d x & =\left[4 x-x^{3}+\frac{x^{4}}{4}\right]_{-1}^{2} \\
& =(8-8+4)-\left(-4+1+\frac{1}{4}\right)=6 \frac{3}{4}
\end{aligned}
$$

Most students knew to seek a difference of two areas and were adept with basic integration; however, quite often arithmetic errors in evaluations or the incorrect use of negative signs marred their progress towards acquiring full marks. Some students unnecessarily 'overworked' the problem by creating three or four integrations, increasing the likelihood of an error. A few students took a more direct route that involved symmetry of the curve.

1 mark for a clear indication that the enclosed area is between $x=-1$ and $x=2$
1 mark for correct integral
1 mark for correct answer

(b) Determine the coordinates of the points of intersection:

Given that at $x=2, y=4$:

$$
\begin{aligned}
4 & =3 x^{2}-x^{3} \\
x^{3}-3 x^{2}+4 & =0 \\
(x-2)\left(x^{2}+k x-2\right) & =0
\end{aligned}
$$

Equate coefficients:

$$
\begin{aligned}
-2 x^{2}+k x^{2} & =-3 x^{2} \\
(k-2) x^{2} & =-3 x^{2} \\
k-2 & =-3 \\
k & =-1
\end{aligned}
$$

Therefore:

The area between the horizontal line $y=4$ and the function $f(x)=3 x^{2}-x^{3}$ for $-1 \leq x \leq 3$ is shaded in the diagram above. The integral to find this area as shown in the Examiners report is:
$\int_{-1}^{2}\left(4-\left(3 x^{2}-x^{3}\right)\right) d x=6 \frac{3}{4}$

Worked solutions

Marks

5 Given that two side lengths and the included angle are given, the cosine rule can be applied to determine the distance $A B$, opposite the angle 63°.

Using $c^{2}=a^{2}+b^{2}-2 a b \cos (C)$, with $a=12.6$ and $b=19.2$.
$A B=\sqrt{12.6^{2}+19.2^{2}-2 \times 12.6 \times 19.2 \times \cos \left(63^{\circ}\right)}$

Marks	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	Average
$\%$	38	16	46	1.2

6 (a)

$$
\int_{0}^{1} k \sin (\pi x) d x=1
$$

$$
\left[-\frac{k}{\pi} \cos (\pi x)\right]_{0}^{1}=1
$$

$$
-\frac{k}{\pi} \cos (\pi)+\frac{k}{\pi} \cos (0)=1
$$

1 mark for correct answer

Notes and pointers

Marks	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Average
$\%$	42	18	16	24	1.3

$P\left(\left.x \leq \frac{1}{4} \right\rvert\, x \leq \frac{1}{2}\right)=\frac{P\left(x \leq \frac{1}{4}\right)}{P\left(x \leq \frac{1}{2}\right)}$
$\frac{\int_{0}^{\frac{1}{4}} k \sin (\pi x) d x}{\int_{0}^{\frac{1}{2}} k \sin (\pi x) d x}=\frac{\int_{0}^{\frac{1}{4}} k \sin (\pi x) d x}{0.5}=\frac{2-\sqrt{2}}{2}$
Few students used symmetry of the probability density function to obtain the denominator. However, it appeared that many students found this question both difficult and complicated. Many recognised the need for conditional probability but thought the required intersection was between $\frac{1}{4}$ and $\frac{1}{2}$ rather than between 0 and $\frac{1}{4}$. Some students correctly navigated complicated expressions and their evaluation without recognising how much simply cancelled (for example, k), while others, whose method was correct, were let down by poor manipulation skills and were left with $\boldsymbol{\pi}$ in the answer.

1 mark for recognising or calculating $P\left(x \leq \frac{1}{2}\right)=0.5$
1 mark for calculating $P\left(x \leq \frac{1}{4}\right)$
1 mark for correct answer

Notes and pointers
 Notes and pointers

Worked solutions

Marks

(b) This is a conditional probability question where:

$$
P\left(\left.X \leq \frac{1}{4} \right\rvert\, X \leq \frac{1}{2}\right)=\frac{P\left(x \leq \frac{1}{4}\right)}{P\left(x \leq \frac{1}{2}\right)},
$$

and by symmetry of the sine function with a period of 2 , over the domain $[0,1]$:

$$
\begin{align*}
P\left(x \leq \frac{1}{2}\right) & =0.5 \tag{1}\\
P\left(x \leq \frac{1}{4}\right) & =\int_{0}^{0.25}\left(\frac{\pi}{2} \sin (\pi x)\right) d x \\
& =\frac{\pi}{2}\left[\frac{-\cos (\pi x)}{\pi}\right]_{0}^{0.25} \\
& =\frac{-1}{2}[\cos (0.25 \pi)-\cos (0)] \\
& =\frac{-1}{2}\left[\frac{1}{\sqrt{2}}-1\right]
\end{align*} \text { Hence: }
$$

$$
\begin{aligned}
P\left(\left.X \leq \frac{1}{4} \right\rvert\, X \leq \frac{1}{2}\right) & =\frac{\frac{-1}{2}\left[\frac{1}{\sqrt{2}}-1\right]}{0.5} \\
& =1-\frac{1}{\sqrt{2}} \\
& =\frac{2-\sqrt{2}}{2}
\end{aligned}
$$

