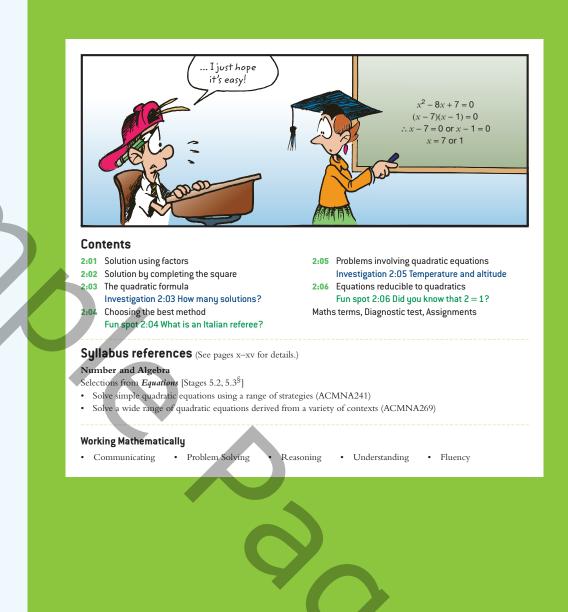
CHAPTER FOCUS

Students will solve linear, quadratic, simultaneous and literal equations in this chapter. They will simplify and solve linear equations involving algebraic fractions, and will substitute values to determine an unknown or to check an answer. Students will factorise and use inverse operations to solve linear equations and literal equations, including those derived from formulas and worded questions. They will also solve a variety of quadratic expressions using different techniques, including completing the square and the quadratic formula. Simultaneous equations involving linear and non-linear equations will be explored and solved using algebraic and graphical techniques and technology.


Outcomes

Equations [Stages 5.2, 5.3[§]]

- MA5.2-1WM selects appropriate notations and conventions to communicate mathematical ideas and solutions
- MA5.2-2WM interprets mathematical or real-life situations, systematically applying appropriate strategies to solve problems
- MA5.2-3WM constructs arguments to prove and justify results
- MA5.2-8NA solves linear and simple quadratic equations, linear inequalities and linear simultaneous equations, using analytical and graphical techniques
- MA5.3-1WM uses and interprets formal definitions and generalisations when explaining solutions and/or conjectures
- MA5.3-2WM generalises mathematical ideas and techniques to analyse and solve problems efficiently
- MA5.3-3WM uses deductive reasoning in presenting arguments and formal proofs
- MA5.3-7NA solves complex linear, quadratic, simple cubic and simultaneous equations, and rearranges literal equations

QUADRATIC EQUATIONS

Key ideas

- A quadratic equation has the general form $ax^2 + bx + c = 0$ where $a \neq 0$ and the highest power of x is two.
- Quadratic equations can be solved by methods of factorisation, completing the square or using the quadratic formula. Choosing the most appropriate method is essential for proficiency.
- There can be two solutions to a quadratic equation, and each of these solutions represents the *x*-intercepts of the quadratic function.
- The value under the square root sign of the quadratic formula, $b^2 4ac$, determines how many solutions there are. This is called the discriminant: $\Delta = b^2 4ac$.
- There are many real-life situations that can be solved using a quadratic equation. Problem solving will require identifying key information, translating this into mathematical expressions, and forming and solving equations using the most appropriate technique.
- Some equations of a higher power can be solved using a suitable substitution. This method 'reduces' the equation so that it resembles a quadratic.

2:01 Solution using factors

PREP QUIZ 2:0:	1			
		2	2	2
Factorise:	1 $x^2 - 3x$ 5 $x^2 + x - 20$	2 $x^2 + 7x$ 6 $x^2 - 8x + 7$	3 $x^2 + 3x + 2$	4 $x^2 - 4x - 4$
Solve for <i>x</i> :	7 $3x = 12$	8 $7x = 0$	9 $x - 4 = 0$	10 $x + 6 = 0$
	ation the highest po	_		ne term quadratic
e.g. $x^2 = 9$	$5x^2 - 8 = 0 \qquad x^2$	$x^2 - 6x = 0 \qquad x^2 - 6x = 0$	$-4x + 3 = 0 \qquad \text{columnation}$	omes from <i>quadrati</i>
	first two above can		but the second	hich is the Latin wo or square.
two require the ex	pression to be facto	orised.		, oqualor
Equations of t	he form $ax^2 = c$			
	e find the square roc	ot of both		How about tha
sides of the equation	on.			Quadratic
The square root of	f 9 is 3 or –3.			equations
				, can have two
				can have two solutions.
So if $x^2 = 9$, then a				
	$x = \pm 3$. two solutions: $x = 3$	and $x = -3$		
The equation has	two solutions: $x = 3$	and $x = -3$		
The equation has worked EX	two solutions: <i>x</i> = 3	and $x = -3$		solutions.
The equation has	two solutions: <i>x</i> = 3		$r^2 = 10$	
The equation has WORKED EX Solve these equat	two solutions: $x = 3$		² = 10	solutions.
The equation has a WORKED EX Solve these equat 1 $x^2 - 16 = 0$	two solutions: $x = 3$	0 3 3n	-5=0	solutions.
The equation has a WORKED EX Solve these equat 1 $x^2 - 16 = 0$ Solutions 1 $x^2 - 16 = 0$ $x^2 = 16$	two solutions: $x = 3$ (AMPLES ions. 2 $a^2 - 5 =$	0 3 3 <i>n</i> 2 <i>a</i> ²	-5 = 0 $a^2 = 5$	solutions.
The equation has a WORKED EX Solve these equat 1 $x^2 - 16 = 0$ Solutions 1 $x^2 - 16 = 0$ $x^2 = 16$ $x = \pm \sqrt{2}$	two solutions: $x = 3$ (AMPLES ions. 2 $a^2 - 5 =$	0 3 3 <i>n</i> 2 <i>a</i> ²	$\begin{array}{c} -5 = 0\\ a^2 = 5\\ \therefore a = \pm\sqrt{5} \end{array}$	solutions. $k^{2} + 4 = 0$
The equation has a WORKED EX Solve these equat 1 $x^2 - 16 = 0$ Solutions 1 $x^2 - 16 = 0$ $x^2 = 16$	two solutions: $x = 3$ (AMPLES ions. 2 $a^2 - 5 =$	$0 \qquad 3 3n$ $2 a^2$ (as	-5 = 0 $a^2 = 5$	solutions. $k^{2} + 4 = 0$
The equation has a WORKED EX Solve these equat 1 $x^2 - 16 = 0$ Solutions 1 $x^2 - 16 = 0$ $x^2 = 16$ $x = \pm \sqrt{2}$	two solutions: $x = 3$ (AMPLES ions. 2 $a^2 - 5 =$	$0 \qquad 3 3n$ $2 a^2$ (as $a = b^2$	-5 = 0 $a^{2} = 5$ $\therefore a = \pm \sqrt{5}$ decimal approximate $= 2 \cdot 236 \text{ or } -2 \cdot 236)$	solutions. $k^{2} + 4 = 0$
The equation has a WORKED EX Solve these equat 1 $x^2 - 16 = 0$ Solutions 1 $x^2 - 16 = 0$ $x^2 = 16$ $x = \pm $ $\therefore x = \pm 4$ 3 $3m^2 = 10$	two solutions: $x = 3$ (AMPLES ions. 2 $a^2 - 5 =$	$0 \qquad 3 3n$ $2 a^2$ (as $a = b^2$	-5 = 0 $a^2 = 5$ $\therefore a = \pm \sqrt{5}$ decimal approxima	solutions. $k^{2} + 4 = 0$
The equation has a WORKED EX Solve these equat 1 $x^2 - 16 = 0$ Solutions 1 $x^2 - 16 = 0$ $x^2 = 16$ $x = \pm $ $\therefore x = \pm 4$ 3 $3m^2 = 10$ $m^2 = \frac{10}{3}$	two solutions: $x = 3$ (AMPLES ions. 2 $a^2 - 5 =$ $\sqrt{16}$	0 3 3 <i>n</i> 2 a^2 (as a = 4 k^2	-5 = 0 $a^{2} = 5$ $a = \pm \sqrt{5}$ decimal approximation $a^{2} - 236 \text{ or } -2.236$ + 4 = 0 $k^{2} = -4$	solutions. 4 $k^2 + 4 = 0$ tions
The equation has a WORKED EX Solve these equat 1 $x^2 - 16 = 0$ Solutions 1 $x^2 - 16 = 0$ $x^2 = 16$ $x = \pm $ $\therefore x = \pm 4$ 3 $3m^2 = 10$ $m^2 = \frac{10}{3}$	two solutions: $x = 3$ (AMPLES ions. 2 $a^2 - 5 =$ $\sqrt{16}$	$0 \qquad 3 3m$ $2 a^2$ (as $a =$ $4 k^2$ Th	-5 = 0 $a^{2} = 5$ $a^{2} = 5$ $a^{2} = \pm \sqrt{5}$ decimal approximation approximation of a proximation	solutions. 4 $k^2 + 4 = 0$ tions umber is positive
The equation has a WORKED EX Solve these equat 1 $x^2 - 16 = 0$ Solutions 1 $x^2 - 16 = 0$ $x^2 = 16$ $x = \pm $ $\therefore x = \pm 4$ 3 $3m^2 = 10$ $m^2 = \frac{10}{3}$ $\therefore m = \pm \sqrt{\frac{10}{3}}$	two solutions: $x = 3$ (AMPLES ions. 2 $a^2 - 5 =$ $\sqrt{16}$	$0 \qquad 3 3m$ $2 a^2$ (as $a =$ $4 k^2$ Th	-5 = 0 $a^{2} = 5$ $a^{2} = 5$ $a^{2} = 5$ decimal approximation of a real normalized for the second	solutions. 4 $k^2 + 4 = 0$ tions umber is positive

2 Quadratic equations

29

quadratic quadratic formula reducible second degree solution solve substitution

2:01 Content statements

Solve simple quadratic equations using a range of strategies (ACMNA241) [Stage 5.2]

- solve simple quadratic equations of the form $ax^2 = c$, leaving answers in exact form and as decimal approximations
- solve quadratic equations of the form $ax^2 + bx + c = 0$, limited to a = 1, using factors

Solve a wide range of quadratic equations derived from a variety of contexts (ACMNA269) [Stage 5.3]

• solve equations of the form $ax^{2} + bx + c = 0$ by factorisation and by 'completing the square'

Answers

PREP QUIZ 2:01

3 5 7	x(x-3) (x+1)(x+2) (x+5)(x-4) x = 4	4 6 8	x(x + 7) (x - 6)(x + 2) (x - 7)(x - 1) x = 0
	x = 4		x = 0 $x = -6$

Lesson starter

Brainstorming

Ask students in groups to list all the forms that quadratic equations can take, e.g. $x^{2} = c$, $ax^{2} = c$, $ax^{2} + bx + c = 0$. Have them try to remember the different methods used to factorise each form, such as perfect squares or completing the square. Have each group construct a comprehensive list of the methods including worked examples. This can form a starting point for this chapter as well as refresh students' factorisation knowledge.

Language

- coefficient complete the square consecutive constant determinant equation expression factorise
- factors formula index null factor perfect square power product

P Digital resources

- eBook
- Foundation worksheet 2:01 **Quadratic equations**

29 **2** Quadratic equations