

STUDENT COMPANION

Pearson Secondary $<$ Teaching Hub Maths 8
 Student Companion

Contributing authors:

Greg Carroll, David Coffey, Grace Jefferson, Diane Oliver, Shaun Oliver, Sarah Plummer, Nicola Silva

[^0]
Pearson Australia

(a division of Pearson Australia Group Pty Ltd)
459-471 Church Street
Level 1, Building B
Richmond, Victoria 3121
www.pearson.com.au

Copyright © Pearson Australia 2024
(a division of Pearson Australia Group Pty Ltd)
First published 2024 by Pearson Australia
2027202620252024
10987654321
Reproduction and communication for educational purposes The Australian Copyright Act 1968 (the Act) allows a maximum of one chapter or 10% of the pages of this work, whichever is the greater, to be reproduced and/or communicated by any educational institution for its educational purposes provided that that educational institution (or the body that administers it) has given a remuneration notice to the Copyright Agency under the Act. For details of the copyright licence for educational institutions contact the Copyright Agency (www.copyright.com.au).

Reproduction and communication for other purposes
Except as permitted under the Act (for example any fair dealing for the purposes of study, research, criticism or review), no part of this book may be reproduced, stored in a retrieval system, communicated or transmitted in any form or by any means without prior written permission. All enquiries should be made to the publisher at the address above.
This book is not to be treated as a blackline master; that is, any photocopying beyond fair dealing requires prior written permission.
Project Leads: Julian Lumb, Lindy Sharkey, Jack Sagar, Natalie Bennett
Development Editor: Anna Pang
Schools Programme Manager: Michelle
Production Editors: Maddy Higginson,
Rights \& Permissions Editor: Amirah Fatin Binte Mohamed Sapi'ee
Illustrators: QBS Learning
Proofreader: Lucy Bates
Series Design: Watershed Art
Typesetters: Integra Software Services
Desktop Operator: Jit-Pin Chong
Printed in Australia by Pegasus
ISBN 9780655713838
Pearson Australia Group Pty Ltd ABN 40004245943

Disclaimer

Any internet addresses (URLs) provided for this Student Companion were valid at the time of publication and were chosen as being appropriate for use as a secondary education research tool. However, due to the dynamic nature of the internet, some addresses may have changed, may have ceased to exist since publication, or may inadvertently link to sites with content that could be considered offensive or inappropriate. While the authors and publisher regret any inconvenience this may cause readers, no responsibility for any such changes or unforeseeable errors can be accepted by either Pearson Australia or the authors.

Attributions

COVER: Alamy: Heycock, Amy, bridge; Simsek, Cigdem, atom; Shutterstock: Aliaksandr, Marko, satellite dish; Demater, drone; Flipser, speedometer; Retouch man, diamond.
Australian Bureau of Statistics: Based on data from © Commonwealth of Austratia, Australian Bureau of Statistics. Licensed under CC BY 4.0, link to licence: https:// creativecommons.org/lieenses/by/4.0/ p. 183t.
Australian Government: Department of Education: Based on data from © Commonwealth of Australia. Australian Government: Department of Education. Licensed under CC BY 4.0, link to licence: https://creativecommons.org/licenses/ by/4.0/, p. 184b
Australian Taxation Office: Based on data from © Australian
Taxation Office for the Commonwealth of Australia, p. 120. Bureau of Meterology: Based on data from © Copyright Commonwealth of Australia, Bureau of Meteorology, p. 184t.
Cable.co.uk: Based on data from Cable.co.uk © 2005-2023, p. 183b.

Shutterstock: Creative Stock Exchange, p. 103.

Contents

1 Number properties 1
Establish and apply the exponent law for multiplication 1
Establish and apply the exponent law for division 3
Establish and apply the exponent law for raising a power to a power 6
Establish and apply the exponent law for raising to the power of 0 9
2 Operations with integers, fractions and decimals 12
Multiply and divide integers 12
Solve problems by multiplying and dividing integers 14
Use the four operations with integers 17
Multiply and divide rational numbers 19
Apply all four operations with integers, fractions and decimals 21
3 Rational and irrational numbers 23
Identify and use irrational numbers 23
Identify the golden ratio andmake the connection betweenthe circumference and diameterof any circle25
Identify and use terminating, recurring and non-recurring decimals 28
4 Percentage increase and decrease 30
Understand percentage increase and decrease 30
Understand percentage changes in realistic situations 35
5 Algebra (expand, simplify and factorise) 38
Use the distributive law to expand simple algebraic expressions 38
Factorise simple algebraic expressions 40
Simplify algebraic expressions involving multiple operations 43
6 Linear graphs 46
Plot and identify a linear relationship using a set of points 46
Graph linear relationships with only one axis intercept 52
Investigate linear graphs using technology 56
Determine the rule for a linear relationship or pattern 60
Solve linear equations graphically 64
7 Linear inequalities 70
Graph inequalities on number lines 70
Graph linear inequalities on the Cartesian plane 73
Solve linear inequalities 78
8 Perimeter, area and volume 80
Calculate the area of composite shapes 80
Approximate the perimeter and area of irregular shapes 82
Understand the connection between volume and capacity 88
9 Circles and sectors 93
Determine the area of a circle 93
Determine the area of a sector using common fractions 95
Determine sector area and arc length 97
Determine the area of composite shapes involving circles 100
Solve problems involving circle measurements 102
10 Time 104
Understand 24-hour time 104
Understand the effect of daylight savings and longitude on local time 108
Understand and work with different time zones 112
11 Rates 116
Understand and apply rates 116
Apply rates to financial situations 118
Apply rates to tax calculations 120
12 Pythagoras' theorem in 2D 123
Measure the side lengths of a right-angled triangle 123
Understand and use Pythagoras' theorem to identify right-angled triangles 125
Compare different applications,demonstrations and proofsof Pythagoras' theorem130
Use Pythagoras' theorem to determine the length of the hypotenuse 134
Use Pythagoras' theorem todetermine the length of a shorterside in a right-angled triangle137
13 Ratios to solve problems 140
Solve problems involving proportional reasoning 140
Apply ratios to currency exchange 143
14 Triangles and quadrilaterals (similarity and congruence) 145
Apply transformations to shapes in the plane 145
Prove congruence in pairs of triangles 148
Explore the propertiesquadrilaterals usingcongruent triangles154
Determine and apply scale factor and angle propertiessimilar shapes158
Prove similarity in pairs of triangles 162
15 Visualising 3D 164
Locate and describe the position of objects in 3D space 164
Use the 3D coordinate system 166
16 Collecting and analysing data 168
Compare sampling methods 168
Understand sampling techniques and data sources 171
Understand and interpret statistics from different samples from the same population 175
Plan and conduct a statistical investigation 181
17 Probability (Venn diagrams and two-way tables) 186
Understand complementary events 186
Draw and understand Venn diagrams 189
Draw and understand two-way tables 194
Recognise and understand mutually exclusive and
non-mutually exclusive events 197
Use Venn diagrams and two-way tables to solve problems 201

How to use this Student Companion

The Student Companion is a complementary resource that offers a print medium for corresponding lessons in Pearson Secondary Teaching Hub. It is designed to support teaching and learning by providing learners with a place to create a portfolio of learning to suit their individual needs, whether you are:

- supporting a blended classroom using the strengths of print and digital
- preparing for exams by creating a study guide or bound reference

■ needing a tool to differentiate learning or

- looking for meaningful homework tasks.

Learners can develop their portfolio of learning as part of classroom learning or at home as an additional opportunity to engage and re-engage with the knowledge and skills from the lesson. This could be done as prior learning in a flipped classroom environment or as an additional revision or homework task.

Learning intention and success criteria

Worked examples

Worked examples provide learners with a step-by-step solution to a problem. The worked examples in the Student Companion correspond to those in the digital lesson and are provided for each skill to:

- scaffold learning

■ support skill acquisition

- reduce the cognitive load.

The worked examples are an effective tool to demonstrate what success looks like. The 'try yourself' format of the worked examples in the Student Companion support the gradual release of responsibility. Learners can view a completed worked example and a video walkthrough of the worked example in the corresponding digital lesson and then apply the scaffolded steps themselves to practise independently.

Practice questions are provided in the Student Companion so that learners can apply the knowledge and skills obtained in the worked example given. These questions are designed to ensure learners build confidence and demonstrate efficiency. They follow on from the Check your understanding questions beside the corresponding worked example in the digital lesson.

Each lesson in the

 Student Companion contains a space for students to reflect on their understanding. The simple and intuitive design of the lesson reflection tool allows students to scale their confidence, reflect on their learning and identify areas in which they need support.Operations with integers, fractions and daciurn's
SC 2: I can multiply and divide integers in word problems
Worked example: Solving word problems with integers
The product of two integers is -22 and their sum is 9 . What are the two numbers?

1 Write each word operation and calculate its value.
(a)
art with 6 and multiply by 3 .
(b) Start with - 6 and triple it.
(c) The product of -6 and -3 .
(d) The quotient of -6 and 3 .

Solve the following problems.
(a) The product of two numbers is -10 and their sum is -3 . What are the two numbers?
(b) The product of two numbers is -10 and their sum is 3 . What are the two numbers?

Solve the following problems.
(a) The product of two numbers is 14 and their sum is -9 . What are the two numbers?
(b) The product of two numbers is 14 and their sum is -15 . What are the two numbers?

4 Team A is trailing team B by 6 points after 10 minutes of play in an 80 -minute match. This scoring trend continues throughout the match. What will team A's final score be in relation to team B's?

5 An aircraft approaching an airport descends by 12 m every second. What is the total change in the aircraft's height after 15 seconds?

Simplify teaching \& energise learning

Discover Pearson Secondary Teaching Hub for years 7 to 10.

Pearson Secondary Teaching Hub has been designed to simplify teaching and energise learning across multiple subjects. Every Secondary Teaching Hub subject offers best-practice learning design delivered in flexible formats for the modern classroom, plus uniquely developed content structures and features for each subject.

This solution provides continuity for students from one class to the next and a rare whole-school view for school leadership while still delivering the rigour and support teachers need to help students meet the specific outcomes of their curriculum area.

Science

Number properties

Establish and apply the exponent law for multiplication

Learning intention: To be able to establish and apply the exponent law for multiplication

Success criteria:

SC 1: I can write the expanded form of a multiplication from exponent form and connect the result to the addition of exponents.
SC 2: I can multiply numbers using exponent notation.
SC 1: I can write the expanded form of a multiplication from exponent form and connect the result to the addition of exponents

Worked example: Multiplying in expanded form

Multiply $5^{4} \times 5^{2}$. Write your answer in exponent form.
Multiply $5^{4} \times 5^{2}$. Write your answer in exponent form.

Thinking	Working
Write the terms in expanded form.	
Write the new expression in exponent form.	
Write the answer.	

1 Write the following numbers in expanded form.
(a) 4^{1}
(b) 4^{2}
(c) 4^{3}
(d) 4^{4}

2 Write the following numbers in exponent form.
(a) 2
(b) 2×2
(c) $2 \times 2 \times 2$
(d) $2 \times 2 \times 2 \times 2$

3 Explain how the exponent form and the expanded form are linked.

SC 2: I can multiply numbers using exponent notation

Worked example: Applying the first exponent law

Write the following in simplest exponent form.
(a) $6^{4} \times 6^{3}$

Thinking	Working
Recall the first exponent law.	
To multiply exponent expressions with the same base, add the powers.	
Write the answer.	

(b) $2 \times 2^{5} \times 7^{2} \times 7^{3}$

Thinking	Working
Recall the first exponent law.	
To multiply exponent expressions with the same base, add the powers. In this case there are two different bases.	
Write the answer.	

1 Use the first exponent law to write the following in simplest exponent form.
(a) 9×9^{2}
(b) 9×9^{3}
(c) $9^{3} \times 9^{2}$
(d) $9^{3} \times 9^{4} \times 9^{5}$

2 Write the following in simplest exponent form.
(a) $2^{4} \times 2^{2}$
(b) $5 \times 5^{2} \times 5^{2}$
(c) $7^{3} \times 7^{5} \times 7^{6}$
(d) $4^{3} \times 4^{5} \times 4^{5}$

3 Write the following in simplest exponent form.
(a) $3 \times 3^{2} \times 5 \times 5^{3}$
(b) $6^{4} \times 9^{2} \times 9^{4}$
(c) $3 \times 3^{2} \times 3^{4} \times 5^{3} \times 3^{3}$
(d) $4^{3} \times 4^{3} \times 4^{3} \times 7^{3}$

Establish and apply the exponent law for division

Learning intention: To establish and apply the exponent law for division

Success criteria:

\square SC 1: I can write the expanded form of a division from exponent form and connect the result to the subtraction of exponents.
\square SC 2: I can divide numbers using exponent notation.
\square SC 3: I can apply the multiplication and division rules, or a combination of both, to simplify an expression.

SC 1: I can write the expanded form of a division from exponent form and connect the result to the subtraction of exponents

Worked example: Dividing numbers written in exponent form

Express $\frac{3^{6}}{3^{2}}$ in simplest exponent form.

Thinking	Working
Write the numerator and denominator in expanded form.	
Recall that any number divided by itself is equal to 1 . Cancel common factors.	
Express the result using exponent notation.	
Write the answer.	

1 Write the following in expanded notation, in simplest exponent form and then calculate the answer.
(a) $\frac{3^{3}}{3}$
(b) $\frac{3^{4}}{3}$
(c) $\frac{3^{4}}{3^{2}}$

(d) $\frac{3^{5}}{3^{2}}$
(e) $\frac{3^{3}}{3^{2}}$
(f) $\frac{3^{5}}{3^{3}}$

SC 2: I can divide numbers using exponent notation

Worked example: Applying the second exponent law

Write the following in simplest exponent form.
(a) $6^{6} \div 6^{2}$

Thinking	Working
Recall the second exponent law.	
To divide exponent expressions with the same base, subtract the powers.	
Write the answer.	

(b) $\frac{3^{3} \times 5^{7}}{3^{2} \times 5^{3}}$

Thinking	Working
Recall the second exponent law.	
To divide exponent expressions with the same base, subtract the powers. In this case there are two different bases.	
Write the answer.	

1 Use the second exponent law to simplify the following. Leave your answers in exponent form.
(a) $\frac{8^{4}}{8}$
(b) $\frac{8^{4}}{8^{2}}$
(c) $\frac{8^{4}}{8^{3}}$
(d) $\frac{8^{6}}{8^{3}}$

2 Use the second exponent law to simplify the following.
(a) $\frac{2^{5}}{2}$
(b) $\frac{3^{10}}{3^{2}}$
(c) $\frac{4^{9}}{4^{7}}$
(d) $\frac{15^{10}}{15^{4}}$

3 Use the second exponent law to find the missing exponent in each of the following.
(a) $3^{12} \div 3^{x}=3^{7}$
(b) $7^{x} \div 7^{4}=7^{3}$
(c) $\frac{4^{8}}{4^{x}}=4^{5}$
(d) $\frac{12^{x}}{12^{2}}=12^{5}$

SC 3: I can apply the multiplication and division rules, or a combination of both, to simplify an expression

Worked example: Applying the first two exponent laws

Simplify $\frac{9^{4} \times 9^{7}}{9^{6}}$.

Thinking	Working
Recall the first two exponent laws.	
Use the first exponent law to simplify the multiplication of terms with the same base.	
Use the second exponent law to simplify the division of terms with the same base.	
Write the answer.	

1 Simplify the following.
(a) $\frac{5^{3} \times 5^{5}}{5^{4}}$
(b) $\frac{5^{4} \times 5^{5}}{5^{4}}$
(d) $\frac{5 \times 5^{2} \times 5^{4}}{5^{3}}$
(c)

2 Simplify the following.
(a) $\frac{4^{4} \times 4^{7}}{4^{6}}$
(b) $\frac{2^{2} \times 2^{5}}{2^{3}}$
(c) $\frac{10^{4} \times 10^{5}}{10^{3}}$
(d) $\frac{8 \times 8^{4} \times 8^{7}}{8^{6}}$

3 Simplify the following.
(a) $\frac{4^{3} \times 4^{6} \times 7^{3}}{4^{4}}$
(b) $\frac{2^{3} \times 2^{5}}{2^{4} \times 9}$
(c) $\frac{5^{5} \times 5^{4} \times 2^{4}}{5^{2}}$
(d) $\frac{7 \times 7^{3} \times 7^{5}}{7^{4} \times 12^{3}}$

Establish and apply the exponent law for raising a power to a power

Learning intention: To establish and apply the exponent law for raising a power to a power

Success criteria:

SC 1: I can use expanded form to simplify a power of a power.
\square SC 2: I can use exponent laws to simplify a power of a power.
\square SC 3: I can apply the exponent laws of multiplication, division and raising to a power.

SC 1: I can use expanded form to simplify a power of a power

Worked example: Simplifying an exponential expression raised to a power

Simplify $\left(4^{3}\right)^{2}$. Leave your answer in exponent form.

Thinking	Working
Write the expression in expanded form.	
Use the first exponent law to simplify the multiplication of terms with the same base.	
Write the answer.	

1 Simplify the following by expanding and then applying the first exponent law.
Leave your answer in exponent form
(a) $\left(2^{2}\right)^{2}$
(b) $\left(2^{2}\right)$
(c) $\left(7^{2}\right)^{3}$
(d) $\left(7^{2}\right)^{4}$

2 Complete the following table.

Expression	Expansion	Simplified form	Multiplying the exponents
$\left(4^{3}\right)^{2}$	$4^{3} \times 4^{3}$	4^{6}	$2 \times 3=6$
$\left(5^{4}\right)^{2}$			
$\left(15^{2}\right)^{4}$			

3 Explain how to raise a power to a power. You should include an example.
\qquad
\qquad

SC 2: I can use exponent laws to simplify a power of a power

Worked example: Applying the third exponent law

Express $\left(6^{4}\right)^{3}$ in simplest exponent form.

2 Express the following in simplest exponent form.
(a) $\left(7^{2}\right)^{6}$
(b) $\left(4^{3}\right)$
(c) $\left(6^{4}\right)^{3}$
(d) $\left(9^{5}\right)^{2}$
(e) $\left(10^{4}\right)^{5}$
(f) $\left(2^{5}\right)^{4}$

3 Express the following in simplest exponent form.
(a)

(b) $\left(\left(\frac{6}{7}\right)^{3}\right)^{5}$
(c) $\left(15.2^{3}\right)^{4}$
(d) $\left(7.9^{4}\right)^{5}$
(e) $\left(2.05^{5}\right)^{3}$
(f) $\left(1.12^{4}\right)^{4}$

SC 3: I can apply the exponent laws of multiplication, division and raising to a power

Worked example: Applying the first three exponent laws

Express $\frac{3^{3} \times\left(3^{2}\right)^{3}}{3^{5}}$ in simplest exponent form.

Thinking	Working
Use the exponent law to simplify raising a power to a power. To raise a power to a power, multiply the exponents.	
Use the first exponent law to simplify the multiplication of terms with the same base.	
Use the second exponent law to simplify the division of terms with the same base.	
Write the answer.	

1 Simplify the following. Express your answer in simplest exponent form.
(a) $\left(5^{3}\right)^{5} \times 5^{2}$
(b) $\left(5^{3}\right)^{5} \times 5^{3}$
(c) $\left(5^{2}\right)^{5} \times 5^{2}$
(d) $\left(5^{4}\right)^{3} \times 5 \times 5^{3}$
(e) $\left(4^{3}\right)^{3} \div 4^{2}$
(f) $\left(4^{3}\right)^{2} \times 4^{2} \div 4^{5}$
(g) $\left(4^{2}\right)^{4} \div 4^{3}$
(h) $\left(4^{4}\right)^{3} \div 4^{5}$
(i) $\frac{7^{4} \times 7^{8}}{\left(7^{2}\right)^{5}}$
(j) $\frac{2^{4} \times 2^{5}}{\left(2^{2}\right)^{4}}$
(k) $\frac{10^{10} \times\left(10^{2}\right)^{4} \times 10^{3}}{\left(10^{5}\right)^{3}}$
(I) $\frac{13 \times\left(13^{3}\right)^{4} \times\left(13^{4}\right)^{2}}{13^{17}}$

Establish and apply the exponent law for raising to the power of 0

Learning intention: To establish and apply the exponent law for raising to the power of 0

Success criteria:

\square SC 1: I can demonstrate that any natural number raised to the power of 0 is equal to 1.
\square SC 2: I can simplify and evaluate expressions that require multiple exponent laws to be used.

SC 1: I can demonstrate that any natural number raised to the power of 0 is equal to 1

Worked example: Dividing a number written in exponent form byitself
(a) Calculate the value of $\frac{5^{3}}{5^{3}}$ by writing the numerator and denominator in expanded form.

Thinking	Working
Write the numerator and denominator in expanded form.	
Recall that any number divided by itself is equal to 1.	
Write the answer.	

(b) Simplify $\frac{5^{3}}{5^{3}}$ using the second exponent law.

| Thinking | Working |
| :--- | :--- | :--- |
| Recall the second exponent law | |
| Use the second law to simplify
 the division of terms with the
 same base. | |

(c) What do you conclude from your answers to parts (a) and (b)?

Thinking	Working
Compare the results from parts (a) and (b).	
Write the answer.	

1 Complete the following table.

Calculation	Answer	Expanded form	Simplest exponent form answer
$8 \div 8=$	1		8^{0}
$6 \div 6=$			
$3^{2} \div 3^{2}=$			
$9^{3} \div 9^{3}=$			
$7^{4} \div 7^{4}=$			

2 (a) Complete this table.

10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	10^{0}
100000	10000				

(b) Describe the pattern in the exponent values.
\qquad

(c) Describe the pattern in the value of the numbers.
\qquad
\qquad
(d) What does this tell you about the value of 10° ?

3 Explain why raising any number to the power of 0 equals 1 (i.e. $x^{0}=1$).

SC 2: I can simplify and evaluate expressions that require multiple exponent laws to be used

Worked example: Applying the first four exponent laws

Express $\frac{\left(3^{3}\right)^{2} \times 5^{4}}{5^{2}} \times \frac{5^{2}}{3^{2}} \div \frac{5^{0}}{5^{3}}$ in simplest exponent form.

Thinking	Working
Use the exponent law to simplify raising a power to a power. To raise a power to a power, multiply the exponents.	
Write the division by a fraction as the multiplication by the inverse fraction.	
Use the first exponent law to simplify the multiplication of terms with the same base.	
Use the second exponent law to simplify the division of terms with the same base.	
Write the answer.	

1 Simplify the following. Write your answer in simplest exponent form.
(a) $\frac{8^{0} \times\left(8^{4}\right)^{2} \times 7^{3}}{8^{6}}$
(b) $\frac{3^{5} \times 6^{12}}{3 \times\left(6^{5}\right)^{0}}$
(c) $\frac{2^{4} \times 2^{8} \times 10^{0}}{\left(2^{2}\right)^{2}}$
(d) $\frac{7^{0} \times\left(7^{2}\right)^{5} \times 11^{4}}{7^{7} \times 11^{2}}$

2 Determine the unknown exponent in each of the following.
(a) $2^{9} \times 2^{0} \div 2^{x}=2^{6}$

(b) $3^{x} \times 3^{7} \div\left(3^{0}\right)^{2}=3^{9}$
(c) $\frac{2^{6} \times 2^{0}}{2^{x}}=2^{2}$
(d) $\frac{9^{x}}{9^{0} \times 9^{2}}=\left(9^{5}\right)^{2}$

~

[^0]: Pearson acknowledges the Traditional Custodians of the lands upon which the many schools throughout Australia are located.

 We respect the living cultures of Aboriginal and Torres Strait Islander peoples and their ongoing connection to Country across lands, sky, seas, waterways and communities. We celebrate the richness of Indigenous Knowledge systems, shared with us and with schools Australia-wide.

 We pay our respects to Elders, past and present.

