Structural Analysis: Skills for Practice, 1st edition

  • James Hanson

Your access includes:

  • Search, highlight, notes, and more
  • Easily create flashcards
  • Use the app for access anywhere
  • 14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Learn more, spend less

  • Watch and learn

    Videos & animations bring concepts to life

  • Listen on the go

    Learn how you like with full eTextbook audio

  • Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized

    Access all your eTextbooks in one place

  • Easily continue access

    Keep learning with auto-renew

Overview

Structural Analysis: Skills for Practice encourages engineering students to develop intuition and the habit of evaluating the reasonableness of structural analysis results. The author presents examples and problems that incorporate a thought process to help you develop the metacognitive skill of thinking about your own thought process.

The text presents content not seen in other structural analysis books that you'll need to pass the licensure exam and frames ideas for application on the job. Drawing upon the evaluation skills gathered from a 6-year project with experienced structural engineers, the author helps you learn skills to transition from novice to expert faster and to become more competent in your career.

Published by Pearson (August 26th 2020) - Copyright © 2020

ISBN-13: 9780134877129

Subject: Civil Engineering

Category: Structural Analysis

Overview

  1. Loads and Structure Idealization
    • 1.1 Loads
    • 1.2 Load Combinations
    • 1.3 Structure Idealization
    • 1.4 Application of Gravity Loads
    • 1.5 Application of Lateral Loads
    • 1.6 Distribution of Lateral Loads by Flexible Diaphragm
  2. Predicting Results
    • 2.1 Qualitative Truss Analysis
    • 2.2 Principle of Superposition
    • 2.3 Principle of Superposition
    • 2.4 Approximating Loading Conditions
  3. Cables and Arches
    • 3.1 Cables with Point Loads
    • 3.2 Cables with Uniform Loads
    • 3.3 Arches
  4. Internal Force Diagrams
    • 4.1 Internal Forces by Integration
    • 4.2 Constructing Diagrams by Deduction
    • 4.3 Diagrams for Frames
  5. Deformations
    • 5.1 Double Integration Method
    • 5.2 Conjugate Beam Method
    • 5.3 Virtual Work Method
  6. Influence Lines
    • 6.1 Table-of-Points Method
    • 6.2 Müller-Breslau Method
    • 6.3 Using Influence Lines
  7. Introduction to Computer Aided Analysis
    • 7.1 Why Computer Results are Always Wrong
    • 7.2 Checking Fundamental Principles
    • 7.3 Checking Features of the Solution
  8. Approximate Analysis of Indeterminate Trusses and Braced Frames
    • 8.1 Indeterminate Trusses
    • 8.2 Braced Frames with Lateral Loads
    • 8.3 Braced Frames with Gravity Loads
  9. Approximate Analysis of Rigid Frames
    • 9.1 Gravity Load Method
    • 9.2 Portal Method for Lateral Loads
    • 9.3 Cantilever Method for Lateral Loads
    • 9.4 Combined Gravity and Lateral Loads
  10. Approximate Lateral Displacements
    • 10.1 Braced Frames — Story Drift Method
    • 10.2 Braced Frames — Virtual Work Method
    • 10.3 Rigid Frames — Stiff Beam Method
    • 10.4 Rigid Frames — Virtual Work Method
    • 10.5 Solid Walls — Single Story
    • 10.6 Solid Walls — Multistory
  11. Diaphragms
    • 11.1 Distribution of Lateral Loads by Rigid Diaphragm
    • 11.2 In Plane Shear: Collector Beams
    • 11.3 In Plane Moment: Diaphragm Chords
  12. Force Method
    • 12.1 One Degree Indeterminate Beams
    • 12.2 Multi-Degree Indeterminate Beams
    • 12.3 Indeterminate Trusses
  13. Moment Distribution Method
    • 13.1 Overview of Method
    • 13.2 Fixed End Moments and Distribution Factors
    • 13.3 Beams and Sidesway Inhibited Frames
    • 13.4 Sidesway Frames
  14. Direct Stiffness Method for Trusses
    • 14.1 Overview of Method
    • 14.2 Transformation and Element Stiffness Matrices
    • 14.3 Compiling the System of Equations
    • 14.4 Finding Deformations, Reactions and Internal Forces
    • 14.5 Additional Loadings
  15. Direct Stiffness Method for Frames
    • 15.1 Element Stiffness Matrix
    • 15.2 Transformation Matrix
    • 15.3 Global Stiffness Matrix
    • 15.4 Loads Between Nodes
    • 15.5 Direct Stiffness Method
    • 15.6 Internal Forces

Your questions answered

Pearson+ is your one-stop shop, with eTextbooks and study videos designed to help students get better grades in college.

A Pearson eTextbook is an easy‑to‑use digital version of the book. You'll get upgraded study tools, including enhanced search, highlights and notes, flashcards and audio. Plus learn on the go with the Pearson+ app.

Your eTextbook subscription gives you access for 4 months. You can make a one‑time payment for the initial 4‑month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4‑month term ends. You can turn on auto‑renew in My account at any time to continue your subscription before your 4‑month term ends.

When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.

If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.

To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.

Channels is a video platform with thousands of explanations, solutions and practice problems to help you do homework and prep for exams. Videos are personalized to your course, and tutors walk you through solutions. Plus, interactive AI‑powered summaries and a social community help you better understand lessons from class.

Channels is an additional tool to help you with your studies. This means you can use Channels even if your course uses a non‑Pearson textbook.

When you choose a Channels subscription, you're signing up for a 1‑month, 3‑month or 12‑month term and you make an upfront payment for your subscription. By default, these subscriptions auto‑renew at the frequency you select during checkout.

When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.