Real Analysis, 5th edition
$16.99per month
Minimum 4-month term, pay monthly or pay $67.96 upfront
Includes:
- Instant access to eTextbook
- Search, highlights, notes, and more
- Expert video lessons and practice questions
- Videos, study help in multiple subjects. List in FAQs.
- Practice problems and study guides
- Q&A with experts and AI tutor
$10.99per month
Minimum 4-month term, pay monthly or pay $43.96 upfront
Includes:
- Instant access to eTextbook
- Search, highlights, notes, and more
$16.99per month
Minimum 4-month term, pay monthly or pay $67.96 upfront
Includes:
- Instant access to eTextbook
- Search, highlights, notes, and more
- Expert video lessons and practice questions
- Videos, study help in multiple subjects. List in FAQs.
- Practice problems and study guides
- Q&A with experts and AI tutor
$10.99per month
Minimum 4-month term, pay monthly or pay $43.96 upfront
Includes:
- Instant access to eTextbook
- Search, highlights, notes, and more
$10.99per month
Minimum 4-month term, pay monthly or pay $43.96 upfront
Includes:
- Instant access to eTextbook
- Search, highlights, notes, and more
$10.99per month
Minimum 4-month term, pay monthly or pay $43.96 upfront
Includes:
- Instant access to eTextbook
- Search, highlights, notes, and more
Access to this eTextbook title
Learn more, spend less
-
Find it fast
Quickly navigate your eTextbook with search
-
Stay organized
Access all your eTextbooks in one place
-
Easily continue access
Keep learning with auto-renew
Overview
Halsey L. Royden's Real Analysis has contributed to educating generations of mathematical analysis students. The 5th Edition of this classic text presents some important updates while presenting the measure theory, integration theory and elements of metric, topological, Hilbert and Banach spaces that a modern analyst should know. Part I continues to consider Lebesgue measure and integration for functions of a real variable. In this revision, the treatment of general measure and integration is moved to Part II rather than Part III; material formerly in Part II is placed in Part III and a brief Part IV. This brings measure and integration on Euclidean space closer to their origin, the case of real variables; it also presents the opportunity to foreshadow more strongly, in the context of general measure and integration, concepts which later appear in general spaces. The text assumes an undergraduate course on the fundamental concepts of analysis.
Published by Pearson (July 7th 2023) - Copyright © 2023
ISBN-13: 9780136853473
Subject: Advanced Math
Category: Real Analysis
Overview
I: LEBESGUE INTEGRATION FOR FUNCTIONS OF A SINGLE REAL VARIABLE
Preliminaries on Sets, Mappings, and Relations
- Unions and Intersections of Sets
- Mappings Between Sets
- Equivalence Relations, the Axiom of Choice and Zorn's Lemma
- The Real Numbers: Sets, Sequences and Functions
- 1.1 The Field, Positivity and Completeness Axioms
- 1.2 The Natural and Rational Numbers
- 1.3 Countable and Uncountable Sets
- 1.4 Open Sets, Closed Sets, and Borel Sets of Real Numbers
- 1.5 Sequences of Real Numbers
- 1.6 Continuous Real-Valued Functions of a Real Variable
- Lebesgue Measure
- 2.1 Introduction
- 2.2 Outer Measure
- 2.3 The σ-algebra of Lebesgue Measurable Sets
- 2.4 Finer Properties of Measurable Sets
- 2.5 Countable Additivity and Continuity of Measure, and the Borel-Cantelli Lemma
- 2.6 Vitali's Example of a Nonmeasurable Set
- 2.7 The Cantor Set and the Cantor-Lebesgue Function
- Lebesgue Measurable Functions
- 3.1 Sums, Products, and Compositions
- 3.2 Sequential Pointwise Limits and Simple Approximation
- 3.3 Littlewood's Three Principles, Egoroff's Theorem and Lusin's Theorem
- Lebesgue Integration
- 4.1 Comments on the Riemann Integral
- 4.2 The Integral of a Bounded, Finitely Supported, Measurable Function
- 4.3 The Integral of a Non-Negative Measurable Function
- 4.4 The General Lebesgue Integral
- 4.5 Countable Additivity and Continuity of Integration
- Lebesgue Integration: Further Topics
- 5.1 Uniform Integrability and Tightness: The Vitali Convergence Theorems
- 5.2 Convergence in the Mean and in Measure: A Theorem of Riesz
- 5.3 Characterizations of Riemann and Lebesgue Integrability
- Differentiation and Integration
- 6.1 Continuity of Monotone Functions
- 6.2 Differentiability of Monotone Functions: Lebesgue's Theorem
- 6.3 Functions of Bounded Variation: Jordan's Theorem
- 6.4 Absolutely Continuous Functions
- 6.5 Integrating Derivatives: Differentiating Indefinite Integrals
- 6.6 Measurability: Images of Sets, Compositions of Functions
- 6.7 Convex Functions
- The LΡ Spaces: Completeness and Approximation
- 7.1 Normed Linear Spaces
- 7.2 The Inequalities of Young, Hölder and Minkowski
- 7.3 LΡ is Complete: Rapidly Cauchy Sequences and The Riesz-Fischer Theorem
- 7.4 Approximation and Separability
- The LΡ Spaces: Duality, Weak Convergence and Minimization
- 8.1 Bounded Linear Functionals on a Normed Linear Space
- 8.2 The Riesz Representation of the Dual of Lp, 1 ≤ p < ∞
- 8.3 Weak Sequential Convergence in Lp
- 8.4 The Minimization of Convex Functionals
II: MEASURE AND INTEGRATION: GENERAL THEORY
- General Measure Spaces: Their Properties and Construction
- 9.1 Measurable Sets and Measure Spaces
- 9.2 Measures Induced by an Outer-measure
- 9.3 The Carathéodory-Hahn Theorem
- Particular Measures: Lebesgue Measure on Euclidean Space, Borel Measures, and Signed Measure
- 10.1 Lebesgue Measure on Euclidean Space
- 10.2 Lebesgue Measurability and Measure of Images of Mappings
- 10.3 Regularity of Borel Measures on Rn, and Cumulative Distribution Functions
- 10.4 Carathéodory Outer-measures and Hausdorff Measures
- 10.5 Signed Measures: the Hahn and Jordan Decompositions
- Integration Over General Measure Spaces
- 11.1 Measurable Functions: the Egoroff and Lusin Theorems
- 11.2 Integration of Non-negative Measurable Functions: Fatou's Lemma, the Monotone Convergence Theorem and Beppo Levi's Theorem
- 11.3 Integration of General Measurable Functions: the Dominated Convergence Theorem and the Vitali Convergence Theorem
- 11.4 The Radon-Nikodym Theorem
- 11.5 Product Measures: the Tonelli and Fubini Theorems
- 11.6 Products of Lebesgue measure on Euclidean spaces: Cavalieri's Principle
- General Lp Spaces: Completeness, Convolution, and Duality
- 12.1 The Spaces Lp(X; μ); 1 ≤ p ≤ ∞
- 12.2 Convolution, Smooth Approximation and a Smooth Urysohn's Lemma
- 12.3 The Riesz Representation Theorem for the Dual of Lp(X; μ); 1 ≤ p < ∞
- 12.4 Weak Sequential Compactness in Lp(X; μ); 1 < p < ∞
- 12.5 The Kantorovitch Representation Theorem for the Dual of L∞ (X; μ)
III: ABSTRACT SPACES: METRIC, TOPOLOGICAL, BANACH, AND HILBERT SPACES
- Metric Spaces: General Properties
- 13.1 Examples of Metric Spaces
- 13.2 Open Sets, Closed Sets, and Convergent Sequences
- 13.3 Continuous Mappings Between Metric Spaces
- 13.4 Complete Metric Spaces
- 13.5 Compact Metric Spaces
- 13.6 Separable Metric Spaces
- Metric Spaces: Three Fundamental Theorems and Applications
- 14.1 The Arzelà-Ascoli Theorem
- 14.2 The Banach Contraction Principle
- 14.3 The Baire Category Theorem
- 14.4 The Nikodym Metric Space: The Vitali-Hahn-Saks Theorem and the Dunford-Pettis Theorem
- Topological Spaces: General Properties
- 15.1 Open Sets, Closed Sets, Bases, and Subbases
- 15.2 The Separation Properties
- 15.3 Countability and Separability
- 15.4 Continuous Mappings Between Topological Spaces
- 15.5 Compact Topological Spaces
- 15.6 Connected Topological Spaces
- Topological Spaces: Three Fundamental Theorems
- 16.1 Urysohn's Lemma and the Tietze Extension Theorem
- 16.2 The Tychonoff Product Theorem
- 16.3 The Stone-Weierstrass Theorem
- Continuous Linear Operators Between Banach Spaces
- 17.1 Normed Linear Spaces
- 17.2 Linear Operators
- 17.3 Compactness Lost: Infinite Dimensional Normed Linear Spaces
- 17.4 The Open Mapping and Closed Graph Theorems
- 17.5 The Uniform Boundedness Principle
- Duality for Normed Linear Spaces
- 18.1 Linear Functionals, Bounded Linear Functionals, and Weak Topologies
- 18.2 The Hahn-Banach Theorem
- 18.3 Reflexive Banach Spaces and Weak Sequential Convergence
- 18.4 Locally Convex Topological Vector Spaces
- 18.5 The Separation of Convex Sets and Mazur's Theorem
- 18.6 The Krein-Milman Theorem
- Compactness Regained: The Weak Topology
- 19.1 Alaoglu's Extension of Helly's Theorem
- 19.2 Reflexivity and Weak Compactness: Kakutani's Theorem
- 19.3 Compactness and Weak Sequential Compactness: The Eberlein-Šmulian Theorem
- 19.4 Metrizability of Weak Topologies
- Continuous Linear Operators on Hilbert Spaces
- 20.1 The Inner Product and Orthogonality
- 20.2 Bessel's Inequality and Orthonormal Bases
- 20.3 The Dual Space and Weak Sequential Convergence
- 20.4 Symmetric Operators
- 20.5 Compact Operators
- 20.6 The Hilbert-Schmidt Theorem
- 20.7 The Riesz-Schauder Theorem: Characterization of Fredholm Operators
IV: MEASURE AND TOPOLOGY: INVARIANT MEASURES
- Measure and Topology
- 21.1 Locally Compact Topological Spaces
- 21.2 Separating Sets and Extending Functions
- 21.3 The Construction of Radon Measures
- 21.4 The Representation of Positive Linear Functionals on Cc (X): The Riesz-Markov Theorem
- 21.5 The Riesz Representation Theorem for the Dual of C(X): The Riesz-Kakutani Theorem
- 21.6 Regularity Properties of Baire Measures
- Invariant Measures
- 22.1 Topological Groups: The General Linear Group
- 22.2 Kakutani's Fixed Point Theorem
- 22.3 Invariant Borel Measures on Compact Groups: von Neumann's Theorem
- 22.4 Measure Preserving Transformations and Ergodicity: The Bogoliubov-Krilov Theorem
Bibliography
Index
Your questions answered
When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.
If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.
To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.
When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.
We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.
A Study & Exam Prep subscription includes video lessons, practice problems and other study tools. Get unlimited access to the full range of subjects:
Yes, the Study & Exam Prep Pack's feature is Channels, which can be purchased separately at any time. Simply go to Channels on the Pearson+ site and choose monthly, quarterly, or annual access, separate from your eTextbook subscription. Still deciding? Watch the first six videos free and buy it if you love it (we know you'll love it!).
Currently, they are the exact same offering. 'Study & Exam Prep Pack' is what we call 'Channels' when it is bundled with an eTextbook or bundled with MyLab & Mastering courseware. When purchased on its own, you will see it called Channels, still the same study & exam prep help you need.