Calculus: Early Transcendentals, 3rd edition
Choose the option that's right for you
Single
$9.99 / mo
4month minimum term for $39.96
 Access this eText title
 Up to 2 devices
Multi
$14.99 / mo
4month minimum term for $59.96
 Access over 1,500 titles
 Up to 2 devices
 Discounted tutor access
Learn more, spend less

Watch and learn
Videos & animations bring concepts to life

Listen on the go
Learn how you like with full eText audio

Learn anytime, anywhere
Get the app to access your eText whenever you need it

Make it your own
Your notes. Your highlights. Your eText

Find it fast
Quickly navigate your eText with search
Overview
Calculus features clear, instructional narrative and a wealth of meticulously crafted exercise sets. Examples are stepped out and thoughtfully annotated, and figures are designed to help you learn important concepts.
Published by Pearson (September 1st 2020)  Copyright © 2021
ISBN13: 9780136880677
Subject: Calculus
Category: Calculus
Table of contents
1. Functions
1.1 Review of Functions
1.2 Representing Functions
1.3 Inverse, Exponential, and Logarithmic Functions
1.4 Trigonometric Functions and Their Inverses
Review Exercises
2. Limits
2.1 The Idea of Limits
2.2 Definitions of Limits
2.3 Techniques for Computing Limits
2.4 Infinite Limits
2.5 Limits at Infinity
2.6 Continuity
2.7 Precise Definitions of Limits
Review Exercises
3. Derivatives
3.1 Introducing the Derivative
3.2 The Derivative as a Function
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules
3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change
3.7 The Chain Rule
3.8 Implicit Differentiation
3.9 Derivatives of Logarithmic and Exponential Functions
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates
Review Exercises
4. Applications of the Derivative
4.1 Maxima and Minima
4.2 Mean Value Theorem
4.3 What Derivatives Tell Us
4.4 Graphing Functions
4.5 Optimization Problems
4.6 Linear Approximation and Differentials
4.7 L'Hôpital's Rule
4.8 Newton's Method
4.9 Antiderivatives
Review Exercises
5. Integration
5.1 Approximating Areas under Curves
5.2 Definite Integrals
5.3 Fundamental Theorem of Calculus
5.4 Working with Integrals
5.5 Substitution Rule
Review Exercises
6. Applications of Integration
6.1 Velocity and Net Change
6.2 Regions Between Curves
6.3 Volume by Slicing
6.4 Volume by Shells
6.5 Length of Curves
6.6 Surface Area
6.7 Physical Applications
Review Exercises
7. Logarithmic, Exponential, and Hyperbolic Functions
7.1 Logarithmic and Exponential Functions Revisited
7.2 Exponential Models
7.3 Hyperbolic Functions
Review Exercises
8. Integration Techniques
8.1 Basic Approaches
8.2 Integration by Parts
8.3 Trigonometric Integrals
8.4 Trigonometric Substitutions
8.5 Partial Fractions
8.6 Integration Strategies
8.7 Other Methods of Integration
8.8 Numerical Integration
8.9 Improper Integrals
Review Exercises
9. Differential Equations
9.1 Basic Ideas
9.2 Direction Fields and Euler's Method
9.3 Separable Differential Equations
9.4 Special FirstOrder Linear Differential Equations
9.5 Modeling with Differential Equations
Review Exercises
10. Sequences and Infinite Series
10.1 An Overview
10.2 Sequences
10.3 Infinite Series
10.4 The Divergence and Integral Tests
10.5 Comparison Tests
10.6 Alternating Series
10.7 The Ratio and Root Tests
10.8 Choosing a Convergence Test
Review Exercises
11. Power Series
11.1 Approximating Functions with Polynomials
11.2 Properties of Power Series
11.3 Taylor Series
11.4 Working with Taylor Series
Review Exercises
12. Parametric and Polar Curves
12.1 Parametric Equations
12.2 Polar Coordinates
12.3 Calculus in Polar Coordinates
12.4 Conic Sections
Review Exercises
13. Vectors and the Geometry of Space
13.1 Vectors in the Plane
13.2 Vectors in Three Dimensions
13.3 Dot Products
13.4 Cross Products
13.5 Lines and Planes in Space
13.6 Cylinders and Quadric Surfaces
Review Exercises
14. VectorValued Functions
14.1 VectorValued Functions
14.2 Calculus of VectorValued Functions
14.3 Motion in Space
14.4 Length of Curves
14.5 Curvature and Normal Vectors
Review Exercises
15. Functions of Several Variables
15.1 Graphs and Level Curves
15.2 Limits and Continuity
15.3 Partial Derivatives
15.4 The Chain Rule
15.5 Directional Derivatives and the Gradient
15.6 Tangent Planes and Linear Approximation
15.7 Maximum/Minimum Problems
15.8 Lagrange Multipliers
Review Exercises
16. Multiple Integration
16.1 Double Integrals over Rectangular Regions
16.2 Double Integrals over General Regions
16.3 Double Integrals in Polar Coordinates
16.4 Triple Integrals
16.5 Triple Integrals in Cylindrical and Spherical Coordinates
16.6 Integrals for Mass Calculations
16.7 Change of Variables in Multiple Integrals
Review Exercises
17. Vector Calculus
17.1 Vector Fields
17.2 Line Integrals
17.3 Conservative Vector Fields
17.4 Green's Theorem
17.5 Divergence and Curl
17.6 Surface Integrals
17.7 Stokes' Theorem
17.8 Divergence Theorem
Review Exercises
D2 SecondOrder Differential Equations ONLINE
D2.1 Basic Ideas
D2.2 Linear Homogeneous Equations
D2.3 Linear Nonhomogeneous Equations
D2.4 Applications
D2.5 Complex Forcing Functions
Review Exercises
Appendix A. Proofs of Selected Theorems
Appendix B. Algebra Review ONLINE
Appendix C. Complex Numbers ONLINE
Answers
Index
Table of Integrals
Your questions answered
Introducing Pearson+. Reimagined learning, designed for you. Choose from one eText or over 1,500 eTexts and study tools, all in one place, for one low monthly subscription. A new way to buy books that fits your budget. Make the most of your study time with offline access, enhanced search, notes and flashcards — to get organized, get the work done quicker and get results. Plus, with the app, put textbooks in your pocket and learn wherever. It's time to upgrade the textbook and simplify learning, so you can have time to live too.
Pearson eText is an easytouse digital textbook available from Pearson+. Make it your own by adding notes and highlights. Download the Pearson+ mobile app to learn on the go, even offline. Listen on the go with our new audiobook feature, available for most titles.
When you choose a plan, you're signing up for a 4month term. We will charge your payment method each month until your 4month term has ended. After that, we'll automatically renew your subscription and charge you on a monthtomonth basis unless you turn off autorenewal in My account.
When you purchase a Pearson+ subscription, it will last a minimum of 4 months, and then automatically renew each month thereafter unless you turn off autorenew in My account.
If you want to stop your subscription at the end of your 4month term, simply turn off autorenew from My account. To avoid the next payment charge, make sure you turn auto renewal off 1 day before the auto renewal date.
You can subscribe again after autorenew has been turned off by purchasing another Pearson+ subscription.
We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details before your first monthly payment.
With a Multi Pearson+ subscription plan, you can download up to 5 titles on the Pearson+ app from My list on each of your authorized devices every month.
When you're using your Multi Pearson+ subscription plan in a browser, you can select and read from as many titles as you like.