Stats: Data and Models, 5th edition

  • David E. Bock, 
  • Paul F. Velleman, 
  • Richard D. De Veaux, 
  • Floyd Bullard

$15.99per month

Minimum 4-month term, pay monthly or pay $63.96 upfront

Includes:

  • Instant access to eTextbook
  • Search, highlight, notes, and more
  • Expert video lessons and practice questions
  • Q&A with experts and AI tutor
  • Printable study guides
14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Includes:

  • Instant access to eTextbook
  • Search, highlight, notes, and more
14-day refund guarantee

$15.99per month

Minimum 4-month term, pay monthly or pay $63.96 upfront

Includes:

  • Instant access to eTextbook
  • Search, highlight, notes, and more
  • Expert video lessons and practice questions
  • Q&A with experts and AI tutor
  • Printable study guides
14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Includes:

  • Instant access to eTextbook
  • Search, highlight, notes, and more
14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Includes:

  • Instant access to eTextbook
  • Search, highlight, notes, and more
14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Includes:

  • Instant access to eTextbook
  • Search, highlight, notes, and more
14-day refund guarantee

Learn more, spend less

  • Study simpler and faster

    Use flashcards and other study tools in your eTextbook

  • Watch and learn

    Videos & animations bring concepts to life

  • Listen on the go

    Learn how you like with full eTextbook audio

  • Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized

    Access all your eTextbooks in one place

Overview

Stats: Data and Models uses technology, innovative strategies and a sense of humor to help you think critically about data while maintaining its core concepts, coverage and readability. The authors use technology and simulations to demonstrate variability at critical points throughout, making it easier for you to understand more complicated statistical concepts later in the course (such as the Central Limit Theorem). You'll also get more exposure to large data sets and multivariate thinking, which better prepares you to be a critical consumer of statistics today. The approach in the 5th Edition is revolutionary, yet it retains the book's lively tone and hallmark learning aids features such as its Think/Show/Tell Step-by-Step Examples.

Published by Pearson (July 15th 2020) - Copyright © 2020

ISBN-13: 9780136880790

Subject: Introductory Statistics

Category: Stats: Data and Models

Overview

I: EXPLORING AND UNDERSTANDING DATA

  • 1. Stats Starts Here
    • 1.1 What Is Statistics?
    • 1.2 Data
    • 1.3 Variables
    • 1.4 Models
  • 2. Displaying and Describing Data
    • 2.1 Summarizing and Displaying a Categorical Variable
    • 2.2 Displaying a Quantitative Variable
    • 2.3 Shape
    • 2.4 Center
    • 2.5 Spread
  • 3. Relationships Between Categorical Variables–Contingency Tables
    • 3.1 Contingency Tables
    • 3.2 Conditional Distributions
    • 3.3 Displaying Contingency Tables
    • 3.4 Three Categorical Variables
  • 4. Understanding and Comparing Distributions
    • 4.1 Displays for Comparing Groups
    • 4.2 Outliers
    • 4.3 Re-Expressing Data: A First Look
  • 5. The Standard Deviation as a Ruler and the Normal Model
    • 5.1 Using the Standard Deviation to Standardize Values
    • 5.2 Shifting and Scaling
    • 5.3 Normal Models
    • 5.4 Working with Normal Percentiles
    • 5.5 Normal Probability Plots
    • Review of Part I: Exploring and Understanding Data

II. EXPLORING RELATIONSHIPS BETWEEN VARIABLES

  • 6. Scatterplots, Association, and Correlation
    • 6.1 Scatterplots
    • 6.2 Correlation
    • 6.3 Warning: Correlation ≠ Causation
    • 6.4 Straightening Scatterplots
  • 7. Linear Regression
    • 7.1 Least Squares: The Line of “Best Fit”
    • 7.2 The Linear Model
    • 7.3 Finding the Least Squares Line
    • 7.4 Regression to the Mean
    • 7.5 Examining the Residuals
    • 7.6 R2: The Variation Accounted for by the Model
    • 7.7 Regression Assumptions and Conditions
  • 8. Regression Wisdom
    • 8.1 Examining Residuals
    • 8.2 Extrapolation: Reaching Beyond the Data
    • 8.3 Outliers, Leverage, and Influence
    • 8.4 Lurking Variables and Causation
    • 8.5 Working with Summary Values
    • 8.6 Straightening Scatterplots: The Three Goals
    • 8.7 Finding a Good Re-Expression
  • 9. Multiple Regression
    • 9.1 What Is Multiple Regression?
    • 9.2 Interpreting Multiple Regression Coefficients
    • 9.3 The Multiple Regression Model: Assumptions and Conditions
    • 9.4 Partial Regression Plots
    • 9.5 Indicator Variables
    • Review of Part II: Exploring Relationships Between Variables

III. GATHERING DATA

  • 10. Sample Surveys
    • 10.1 The Three Big Ideas of Sampling
    • 10.2 Populations and Parameters
    • 10.3 Simple Random Samples
    • 10.4 Other Sampling Designs
    • 10.5 From the Population to the Sample: You Can't Always Get What You Want
    • 10.6 The Valid Survey
    • 10.7 Common Sampling Mistakes, or How to Sample Badly
  • 11. Experiments and Observational Studies
    • 11.1 Observational Studies
    • 11.2 Randomized, Comparative Experiments
    • 11.3 The Four Principles of Experimental Design
    • 11.4 Control Groups
    • 11.5 Blocking
    • 11.6 Confounding
    • Review of Part III: Gathering Data

IV. RANDOMNESS AND PROBABILITY

  • 12. From Randomness to Probability
    • 12.1 Random Phenomena
    • 12.2 Modeling Probability
    • 12.3 Formal Probability
  • 13. Probability Rules!
    • 13.1 The General Addition Rule
    • 13.2 Conditional Probability and the General Multiplication Rule
    • 13.3 Independence
    • 13.4 Picturing Probability: Tables, Venn Diagrams, and Trees
    • 13.5 Reversing the Conditioning and Bayes' Rule
  • 14. Random Variables
    • 14.1 Center: The Expected Value
    • 14.2 Spread: The Standard Deviation
    • 14.3 Shifting and Combining Random Variables
    • 14.4 Continuous Random Variables
  • 15. Probability Models
    • 15.1 Bernoulli Trials
    • 15.2 The Geometric Model
    • 15.3 The Binomial Model
    • 15.4 Approximating the Binomial with a Normal Model
    • 15.5 The Continuity Correction
    • 15.6 The Poisson Model
    • 15.7 Other Continuous Random Variables: The Uniform and the Exponential
    • Review of Part IV: Randomness and Probability

V. INFERENCE FOR ONE PARAMETER

  • 16. Sampling Distribution Models and Confidence Intervals for Proportions
    • 16.1 The Sampling Distribution Model for a Proportion
    • 16.2 When Does the Normal Model Work? Assumptions and Conditions
    • 16.3 A Confidence Interval for a Proportion
    • 16.4 Interpreting Confidence Intervals: What Does 95% Confidence Really Mean?
    • 16.5 Margin of Error: Certainty vs. Precision
    • 16.6 Choosing the Sample Size
  • 17. Confidence Intervals for Means
    • 17.1 The Central Limit Theorem
    • 17.2 A Confidence Interval for the Mean
    • 17.3 Interpreting Confidence Intervals
    • 17.4 Picking Our Interval up by Our Bootstraps
    • 17.5 Thoughts About Confidence Intervals
  • 18. Testing Hypotheses
    • 18.1 Hypotheses
    • 18.2 P-Values
    • 18.3 The Reasoning of Hypothesis Testing
    • 18.4 A Hypothesis Test for the Mean
    • 18.5 Intervals and Tests
    • 18.6 P-Values and Decisions: What to Tell About a Hypothesis Test
  • 19. More About Tests and Intervals
    • 19.1 Interpreting P-Values
    • 19.2 Alpha Levels and Critical Values
    • 19.3 Practical vs. Statistical Significance
    • 19.4 Errors
    • Review of Part V: Inference for One Parameter

VI. INFERENCE FOR RELATIONSHIPS

  • 20. Comparing Groups
    • 20.1 A Confidence Interval for the Difference Between Two Proportions
    • 20.2 Assumptions and Conditions for Comparing Proportions
    • 20.3 The Two-Sample z-Test: Testing for the Difference Between Proportions
    • 20.4 A Confidence Interval for the Difference Between Two Means
    • 20.5 The Two-Sample t-Test: Testing for the Difference Between Two Means
    • 20.6 Randomization Tests and Confidence Intervals for Two Means
    • 20.7 Pooling
    • 20.8 The Standard Deviation of a Difference
  • 21. Paired Samples and Blocks
    • 21.1 Paired Data
    • 21.2 The Paired t-Test
    • 21.3 Confidence Intervals for Matched Pairs
    • 21.4 Blocking
  • 22. Comparing Counts
    • 22.1 Goodness-of-Fit Tests
    • 22.2 Chi-Square Test of Homogeneity
    • 22.3 Examining the Residuals
    • 22.4 Chi-Square Test of Independence
  • 23. Inferences for Regression
    • 23.1 The Regression Model
    • 23.2 Assumptions and Conditions
    • 23.3 Regression Inference and Intuition
    • 23.4 The Regression Table
    • 23.5 Multiple Regression Inference
    • 23.6 Confidence and Prediction Intervals
    • 23.7 Logistic Regression
    • 23.8 More About Regression
    • Review of Part VI: Inference for Relationships

VII. INFERENCE WHEN VARIABLES ARE RELATED

  • 24. Multiple Regression Wisdom
    • 24.1 Multiple Regression Inference
    • 24.2 Comparing Multiple Regression Model
    • 24.3 Indicators
    • 24.4 Diagnosing Regression Models: Looking at the Cases
    • 24.5 Building Multiple Regression Models
  • 25. Analysis of Variance
    • 25.1 Testing Whether the Means of Several Groups Are Equal
    • 25.2 The ANOVA Table
    • 25.3 Assumptions and Conditions
    • 25.4 Comparing Means
    • 25.5 ANOVA on Observational Data
  • 26. Multifactor Analysis of Variance
    • 26.1 A Two Factor ANOVA Model
    • 26.2 Assumptions and Conditions
    • 26.3 Interactions
  • 27. Statistics and Data Science
    • 27.1 Introduction to Data Mining
    • Review of Part VII: Inference When Variables Are Related
  • Parts I - V Cumulative Review Exercises

Appendices

  • Answers
  • Credits
  • Indexes
  • Tables and Selected Formulas
 

Your questions answered

Pearson+ is your 1-stop shop with eTextbooks, study tools and exam prep features designed to help students get better grades in college. eTextbooks come with built-in tools that simplify studying, like flashcards, audiobook and search. Pearson+ also features Channels, which includes practice problems, study guides, Q&A with experts, video lessons that help you understand tricky topics and more—all in one place. Channels can be purchased separately or added on to your eTextbook at the time of purchase as part of the Study & Exam Prep Pack.

A Pearson eTextbook is an easy-to-use digital version of your book for class that includes upgraded study tools to help you learn how you learn best. Use enhanced search to find what you need within your eTextbook, highlight and make notes to mark important info, generate flashcards to test your knowledge, and use audio to listen to the text. Every feature is designed to help you learn more efficiently and get results. Plus, you can learn on the go with the Pearson+ app. Find this and more in your eTextbook, available in Pearson+.

The Study & Exam Prep Pack includes practice problems, study guides, Q&A with experts, Channels video lessons that help you understand tricky topics and more. It can be added on to your eTextbook or your MyLab and Mastering learning platform at the time of purchase.

Your eTextbook subscription gives you access for 4 months. You can make a one‑time payment for the initial 4‑month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4‑month term ends. You can turn on auto‑renew in My account at any time to continue your subscription before your 4‑month term ends.

When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.

If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.

To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.

Channels is a video platform with thousands of explanations, solutions and practice problems to help you do homework and prep for exams. Videos are personalized to your course, and tutors walk you through solutions. Plus, interactive AI‑powered summaries and a social community help you better understand lessons from class.

Channels is an additional tool to help you with your studies. This means you can use Channels even if your course uses a non‑Pearson textbook.

When you choose a Channels subscription, you're signing up for a 1‑month, 3‑month or 12‑month term and you make an upfront payment for your subscription. By default, these subscriptions auto‑renew at the frequency you select during checkout.

When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.