Differential Equations and Linear Algebra, 4th edition

  • Henry C. Edwards, 
  • David E. Penney, 
  • David T. Calvis

Your access includes:

  • Search, highlight, notes, and more
  • Easily create flashcards
  • Use the app for access anywhere
  • 14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Learn more, spend less

  • Watch and learn

    Videos & animations bring concepts to life

  • Listen on the go

    Learn how you like with full eTextbook audio

  • Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized

    Access all your eTextbooks in one place

  • Easily continue access

    Keep learning with auto-renew


Differential Equations and Linear Algebra, 4th Edition teaches the basic theory of differential equations and linear algebra while exploring a variety of realistic applications, giving you the right balance between concepts, visualization, applications and skills. It combines core topics in elementary differential equations with concepts and methods of elementary linear algebra; it provides the conceptual development and geometric visualization that is essential to science and engineering students in a modern differential equations and linear algebra course. The authors balance traditional manual methods with the computer-based methods that illuminate qualitative phenomena; this comprehensive approach makes accessible a wider range of more realistic applications.

Published by Pearson (September 1st 2020) - Copyright © 2021

ISBN-13: 9780137313617

Subject: Advanced Math

Category: Differential Equations & Linear Alg (Combined)


  1. First-Order Differential Equations
    • 1.1 Differential Equations and Mathematical Models
    • 1.2 Integrals as General and Particular Solutions
    • 1.3 Slope Fields and Solution Curves
    • 1.4 Separable Equations and Applications
    • 1.5 Linear First-Order Equations
    • 1.6 Substitution Methods and Exact Equations
  2. Mathematical Models and Numerical Methods
    • 2.1 Population Models
    • 2.2 Equilibrium Solutions and Stability
    • 2.3 Acceleration - Velocity Models
    • 2.4 Numerical Approximation: Euler's Method
    • 2.5 A Closer Look at the Euler Method
    • 2.6 The Runge - Kutta Method
  3. Linear Systems and Matrices
    • 3.1 Introduction to Linear Systems
    • 3.2 Matrices and Gaussian Elimination
    • 3.3 Reduced Row-Echelon Matrices
    • 3.4 Matrix Operations
    • 3.5 Inverses of Matrices
    • 3.6 Determinants
    • 3.7 Linear Equations and Curve Fitting
  4. Vector Spaces
    • 4.1 The Vector Space R3
    • 4.2 The Vector Space Rn and Subspaces
    • 4.3 Linear Combinations and Independence of Vectors
    • 4.4 Bases and Dimension for Vector Spaces
    • 4.5 Row and Column Spaces
    • 4.6 Orthogonal Vectors in Rn
    • 4.7 General Vector Spaces
  5. Higher-Order Linear Differential Equations
    • 5.1 Introduction: Second-Order Linear Equations
    • 5.2 General Solutions of Linear Equations
    • 5.3 Homogeneous Equations with Constant Coefficients
    • 5.4 Mechanical Vibrations
    • 5.5 Nonhomogeneous Equations and Undetermined Coefficients
    • 5.6 Forced Oscillations and Resonance
  6. Eigenvalues and Eigenvectors
    • 6.1 Introduction to Eigenvalues
    • 6.2 Diagonalization of Matrices
    • 6.3 Applications Involving Powers of Matrices
  7. Linear Systems of Differential Equations
    • 7.1 First-Order Systems and Applications
    • 7.2 Matrices and Linear Systems
    • 7.3 The Eigenvalue Method for Linear Systems
    • 7.4 A Gallery of Solution Curves of Linear Systems
    • 7.5 Second-Order Systems and Mechanical Applications
    • 7.6 Multiple Eigenvalue Solutions
    • 7.7 Numerical Methods for Systems
  8. Matrix Exponential Methods
    • 8.1 Matrix Exponentials and Linear Systems
    • 8.2 Nonhomogeneous Linear Systems
    • 8.3 Spectral Decomposition Methods
  9. Nonlinear Systems and Phenomena
    • 9.1 Stability and the Phase Plane
    • 9.2 Linear and Almost Linear Systems
    • 9.3 Ecological Models: Predators and Competitors
    • 9.4 Nonlinear Mechanical Systems
  10. Laplace Transform Methods
    • 10.1 Laplace Transforms and Inverse Transforms
    • 10.2 Transformation of Initial Value Problems
    • 10.3 Translation and Partial Fractions
    • 10.4 Derivatives, Integrals, and Products of Transforms
    • 10.5 Periodic and Piecewise Continuous Input Functions
  11. Power Series Methods
    • 11.1 Introduction and Review of Power Series
    • 11.2 Power Series Solutions
    • 11.3 Frobenius Series Solutions
    • 11.4 Bessel Functions


    • A: Existence and Uniqueness of Solutions
    • B: Theory of Determinants



The modules listed below follow the indicated sections in the text. Most provide computing projects that illustrate the corresponding text sections. Many of these modules are enhanced by the supplementary material found at the new Expanded Applications website.

    • 1.3 Computer-Generated Slope Fields and Solution Curves
    • 1.4 The Logistic Equation
    • 1.5 Indoor Temperature Oscillations
    • 1.6 Computer Algebra Solutions
    • 2.1 Logistic Modeling of Population Data
    • 2.3 Rocket Propulsion
    • 2.4 Implementing Euler's Method
    • 2.5 Improved Euler Implementation
    • 2.6 Runge-Kutta Implementation
    • 3.2 Automated Row Operations
    • 3.3 Automated Row Reduction
    • 3.5 Automated Solution of Linear Systems
    • 5.1 Plotting Second-Order Solution Families
    • 5.2 Plotting Third-Order Solution Families
    • 5.3 Approximate Solutions of Linear Equations
    • 5.5 Automated Variation of Parameters
    • 5.6 Forced Vibrations and Resonance
    • 7.1 Gravitation and Kepler's Laws of Planetary Motion
    • 7.3 Automatic Calculation of Eigenvalues and Eigenvectors
    • 7.4 Dynamic Phase Plane Graphics
    • 7.5 Earthquake-Induced Vibrations of Multistory Buildings
    • 7.6 Defective Eigenvalues and Generalized Eigenvectors
    • 7.7 Comets and Spacecraft
    • 8.1 Automated Matrix Exponential Solutions
    • 8.2 Automated Variation of Parameters
    • 9.1 Phase Portraits and First-Order Equations
    • 9.2 Phase Portraits of Almost Linear Systems
    • 9.3 Your Own Wildlife Conservation Preserve
    • 9.4 The Rayleigh and van der Pol Equations

Your questions answered

Pearson+ is your 1-stop shop with eTextbooks, study tools and exam prep features designed to help students get better grades in college. eTextbooks come with built-in tools that simplify studying, like flashcards, audiobook and search. Pearson+ also features Channels, which includes practice problems, study guides, Q&A with experts, video lessons that help you understand tricky topics and more—all in one place. Channels can be purchased separately or added on to your eTextbook at the time of purchase as part of the Study & Exam Prep Pack.

A Pearson eTextbook is an easy-to-use digital version of your book for class that includes upgraded study tools to help you learn how you learn best. Use enhanced search to find what you need within your eTextbook, highlight and make notes to mark important info, generate flashcards to test your knowledge, and use audio to listen to the text. Every feature is designed to help you learn more efficiently and get results. Plus, you can learn on the go with the Pearson+ app. Find this and more in your eTextbook, available in Pearson+.

The Study & Exam Prep Pack includes practice problems, study guides, Q&A with experts, Channels video lessons that help you understand tricky topics and more. It can be added on to your eTextbook or your MyLab and Mastering learning platform at the time of purchase.

Your eTextbook subscription gives you access for 4 months. You can make a one‑time payment for the initial 4‑month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4‑month term ends. You can turn on auto‑renew in My account at any time to continue your subscription before your 4‑month term ends.

When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.

If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.

To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.

Channels is a video platform with thousands of explanations, solutions and practice problems to help you do homework and prep for exams. Videos are personalized to your course, and tutors walk you through solutions. Plus, interactive AI‑powered summaries and a social community help you better understand lessons from class.

Channels is an additional tool to help you with your studies. This means you can use Channels even if your course uses a non‑Pearson textbook.

When you choose a Channels subscription, you're signing up for a 1‑month, 3‑month or 12‑month term and you make an upfront payment for your subscription. By default, these subscriptions auto‑renew at the frequency you select during checkout.

When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.