Intro Stats, 6th edition

  • Richard D. De Veaux, 
  • Paul F. Velleman, 
  • David E. Bock

Your access includes:

  • Search, highlight, and take notes
  • Easily create flashcards
  • Use the app for access anywhere
  • 14-day refund guarantee

$10.99per month

4-month term, pay monthly or pay $43.96

Learn more, spend less

  • Watch and learn

    Videos & animations bring concepts to life

  • Listen on the go

    Learn how you like with full eTextbook audio

  • Special partners and offers

    Enjoy perks from special partners and offers for students

  • Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized

    Access all your eTextbooks in one place


Intro Stats uses inventive strategies to help you think critically about data. By using technology and simulations to demonstrate variability at critical points throughout the course, the authors make it easy for you to understand more complicated statistical concepts later on.

Published by Pearson (July 26th 2021) - Copyright © 2022

ISBN-13: 9780137374922

Subject: Introductory Statistics

Category: Intro Stats

Table of contents

* Indicates optional section


  1. Stats Starts Here
    • 1.1 What Is Statistics?
    • 1.2 Data
    • 1.3 Variables
    • 1.4 Models
  2. Displaying and Describing Data
    • 2.1 Summarizing and Displaying a Categorical Variable
    • 2.2 Displaying a Quantitative Variable
    • 2.3 Shape
    • 2.4 Center
    • 2.5 Spread
  3. Relationships Between Categorical Variables: Contingency Tables
    • 3.1 Contingency Tables
    • 3.2 Conditional Distributions
    • 3.3 Displaying Contingency Tables
    • 3.4 Three Categorical Variables
  4. Understanding and Comparing Distributions
    • 4.1 Displays for Comparing Groups
    • 4.2 Outliers
    • 4.3 Re-Expressing Data: A First Look
  5. The Standard Deviation as a Ruler and the Normal Model
    • 5.1 Using the standard deviation to Standardize Values
    • 5.2 Shifting and Scaling
    • 5.3 Normal Models
    • 5.4 Working with Normal Percentiles
    • 5.5 Normal Probability Plots
    • Review of Part I: Exploring and Understanding Data


  1. Scatterplots, Association, and Correlation
    • 6.1 Scatterplots
    • 6.2 Correlation
    • 6.3 Warning: Correlation ≠ Causation
    • 6.4 *Straightening Scatterplots
  2. Linear Regression
    • 7.1 Least Squares: The Line of "Best Fit"
    • 7.2 The Linear Model
    • 7.3 Finding the Least Squares Line
    • 7.4 Regression to the Mean
    • 7.5 Examining the Residuals
    • 7.6 R2: The Variation Accounted for by the Model
    • 7.7 Regression Assumptions and Conditions
  3. Regression Wisdom
    • 8.1 Examining Residuals
    • 8.2 Extrapolation: Reaching Beyond the Data
    • 8.3 Outliers, Leverage, and Influence
    • 8.4 Lurking Variables and Causation
    • 8.5 Working with Summary Values
    • 8.6 * Straightening Scatterplots: The Three Goals
    • 8.7 * Finding a Good Re-Expression
  4. Multiple Regression
    • 9.1 What Is Multiple Regression?
    • 9.2 Interpreting Multiple Regression Coefficients
    • 9.3 The Multiple Regression Model: Assumptions and Conditions
    • 9.4 Partial Regression Plots
    • 9.5 * Indicator Variables
    • Review of Part II: Exploring Relationships Between Variables


  1. Sample Surveys
    • 10.1 The Three Big Ideas of Sampling
    • 10.2 Populations and Parameters
    • 10.3 Simple Random Samples
    • 10.4 Other Sampling Designs
    • 10.5 From the Population to the Sample: You Can't Always Get What You Want
    • 10.6 The Valid Survey
    • 10.7 Common Sampling Mistakes, or How to Sample Badly
  2. Experiments and Observational Studies
    • 11.1 Observational Studies
    • 11.2 Randomized, Comparative Experiments
    • 11.3 The Four Principles of Experimental Design
    • 11.4 Control Groups
    • 11.5 Blocking
    • 11.6 Confounding
    • Review of Part III: Gathering Data


  1. From Randomness to Probability
    • 12.1 Random Phenomena
    • 12.2 Modeling Probability
    • 12.3 Formal Probability
    • 12.4 Conditional Probability and the General Multiplication Rule
    • 12.5 Independence
    • 12.6 Picturing Probability: Tables, Venn Diagrams, and Trees
    • 12.7 Reversing the Conditioning and Bayes' Rule
  2. Sampling Distributions and Confidence Intervals for Proportions
    • 13.1 The Sampling Distribution for a Proportion
    • 13.2 When Does the Normal Model Work? Assumptions and Conditions
    • 13.3 A Confidence Interval for a Proportion
    • 13.4 Interpreting Confidence Intervals: What Does 95% Confidence Really Mean?
    • 13.5 Margin of Error: Certainty vs. Precision
    • 13.6 * Choosing the Sample Size
  3. Confidence Intervals for Means
    • 14.1 The Central Limit Theorem
    • 14.2 A Confidence interval for the Mean
    • 14.3 Interpreting confidence intervals
    • 14.4 * Picking our Interval Up by our Bootstraps
    • 14.5 Thoughts about Confidence Intervals
  4. Testing Hypotheses
    • 15.1 Hypotheses
    • 15.2 P-values
    • 15.3 The Reasoning of Hypothesis Testing
    • 15.4 A Hypothesis Test for the Mean
    • 15.5 Intervals and Tests
    • 15.6 P-Values and Decisions: What to Tell About a Hypothesis Test
  5. More About Tests and Intervals
    • 16.1 Interpreting P-values
    • 16.2 Alpha Levels and Critical Values
    • 16.3 Practical vs. Statistical Significance
    • 16.4 Errors
    • Review of Part IV: From the Data at Hand to the World at Large


  1. Comparing Groups
    • 17.1 A Confidence Interval for the Difference Between Two Proportions
    • 17.2 Assumptions and Conditions for Comparing Proportions
    • 17.3 The Two-Sample z-Test: Testing the Difference Between Proportions
    • 17.4 A Confidence Interval for the Difference Between Two Means
    • 17.5 The Two-Sample t-Test: Testing for the Difference Between Two Means
    • 17.6 * Randomization-Based Tests and Confidence Intervals for Two Means
    • 17.7 * Pooling
    • 17.8 * The Standard Deviation of a Difference
  2. Paired Samples and Blocks
    • 18.1 Paired Data
    • 18.2 The Paired t-Test
    • 18.3 Confidence Intervals for Matched Pairs
    • 18.4 Blocking
  3. Comparing Counts
    • 19.1 Goodness-of-Fit Tests
    • 19.2 Chi-Square Tests of Homogeneity
    • 19.3 Examining the Residuals
    • 19.4 Chi-Square Test of Independence
  4. Inferences for Regression
    • 20.1 The Regression Model
    • 20.2 Assumptions and Conditions
    • 20.3 Regression Inference and Intuition
    • 20.4 The Regression Table
    • 20.5 Multiple Regression Inference
    • 20.6 Confidence and Prediction Intervals
    • 20.7 * Logistic Regression
    • 20.8 * More About Regression
    • Review of Part V: Inference for Relationships

Parts I–V Cumulative Review Exercises


  1. Answers
  2. Credits
  3. Indexes
  4. Tables and Selected Formulas

Your questions answered

Pearson+ is your one-stop shop, with eTextbooks and study videos designed to help students get better grades in college.

A Pearson eTextbook is an easy‑to‑use digital version of the book. You'll get upgraded study tools, including enhanced search, highlights and notes, flashcards and audio. Plus learn on the go with the Pearson+ app.

Your eTextbook subscription gives you access for 4 months. You can make a one‑time payment for the initial 4‑month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4‑month term ends. You can turn on auto‑renew in My account at any time to continue your subscription before your 4‑month term ends.

When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.

If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.

To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.

Channels is a video platform with thousands of explanations, solutions and practice problems to help you do homework and prep for exams. Videos are personalized to your course, and tutors walk you through solutions. Plus, interactive AI‑powered summaries and a social community help you better understand lessons from class.

Channels is an additional tool to help you with your studies. This means you can use Channels even if your course uses a non‑Pearson textbook.

When you choose a Channels subscription, you're signing up for a 1‑month, 3‑month or 12‑month term and you make an upfront payment for your subscription. By default, these subscriptions auto‑renew at the frequency you select during checkout.

When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.