Thomas' Calculus: Early Transcendentals, 14th edition
Choose the option that's right for you
$9.99 / mo
4month term, pay monthly or pay $39.96
Enjoy these features
 Up to 2 devices
 Discounted tutor access
 Exclusive offers
$14.99 / mo
4month term, pay monthly or pay $59.96
Enjoy these features
 Up to 2 devices
 Discounted tutor access
 Exclusive offers
Learn more, spend less

Watch and learn
Videos & animations bring concepts to life

Learn anytime, anywhere
Get the app to access your eTextbook whenever you need it

Make it your own
Your notes. Your highlights. Your eTextbook

Find it fast
Quickly navigate your eTextbook with search

Stay organized
Access all your eTextbooks in one place
Overview
Thomas' University Calculus: Early Transcendentals will help you understand and apply the key ideas of calculus. The text empowers you to learn effectively with clear explanations, thoughtfully chosen examples, meticulously crafted figures, and superior exercise sets. The right mix of basic, conceptual, and challenging exercises, paired with meaningful applications, is designed to support full comprehension of the material.
In the 14th Edition, new coauthors Chris Heil (Georgia Institute of Technology) and Przemyslaw Bogacki (Old Dominion University) partner with author Joel Hass. They've preserved the text's timetested features, while revisiting every word and figure to enhance your learning experience.
Published by Pearson (January 1st 2021)  Copyright © 2020
ISBN13: 9780137399185
Subject: Calculus
Category: Calculus
Table of contents
1. Functions
1.1 Functions and Their Graphs
1.2 Combining Functions; Shifting and Scaling Graphs
1.3 Trigonometric Functions
1.4 Graphing with Software
1.5 Exponential Functions
1.6 Inverse Functions and Logarithms
2. Limits and Continuity
2.1 Rates of Change and Tangent Lines to Curves
2.2 Limit of a Function and Limit Laws
2.3 The Precise Definition of a Limit
2.4 OneSided Limits
2.5 Continuity
2.6 Limits Involving Infinity; Asymptotes of Graphs
3. Derivatives
3.1 Tangent Lines and the Derivative at a Point
3.2 The Derivative as a Function
3.3 Differentiation Rules
3.4 The Derivative as a Rate of Change
3.5 Derivatives of Trigonometric Functions
3.6 The Chain Rule
3.7 Implicit Differentiation
3.8 Derivatives of Inverse Functions and Logarithms
3.9 Inverse Trigonometric Functions
3.10 Related Rates
3.11 Linearization and Differentials
4. Applications of Derivatives
4.1 Extreme Values of Functions on Closed Intervals
4.2 The Mean Value Theorem
4.3 Monotonic Functions and the First Derivative Test
4.4 Concavity and Curve Sketching
4.5 Indeterminate Forms and L’Hôpital’s Rule
4.6 Applied Optimization
4.7 Newton’s Method
4.8 Antiderivatives
5. Integrals
5.1 Area and Estimating with Finite Sums
5.2 Sigma Notation and Limits of Finite Sums
5.3 The Definite Integral
5.4 The Fundamental Theorem of Calculus
5.5 Indefinite Integrals and the Substitution Method
5.6 Definite Integral Substitutions and the Area Between Curves
6. Applications of Definite Integrals
6.1 Volumes Using CrossSections
6.2 Volumes Using Cylindrical Shells
6.3 Arc Length
6.4 Areas of Surfaces of Revolution
6.5 Work and Fluid Forces
6.6 Moments and Centers of Mass
7. Integrals and Transcendental Functions
7.1 The Logarithm Defined as an Integral
7.2 Exponential Change and Separable Differential Equations
7.3 Hyperbolic Functions
7.4 Relative Rates of Growth
8. Techniques of Integration
8.1 Using Basic Integration Formulas
8.2 Integration by Parts
8.3 Trigonometric Integrals
8.4 Trigonometric Substitutions
8.5 Integration of Rational Functions by Partial Fractions
8.6 Integral Tables and Computer Algebra Systems
8.7 Numerical Integration
8.8 Improper Integrals
8.9 Probability
9. FirstOrder Differential Equations
9.1 Solutions, Slope Fields, and Euler's Method
9.2 FirstOrder Linear Equations
9.3 Applications
9.4 Graphical Solutions of Autonomous Equations
9.5 Systems of Equations and Phase Planes
10. Infinite Sequences and Series
10.1 Sequences
10.2 Infinite Series
10.3 The Integral Test
10.4 Comparison Tests
10.5 Absolute Convergence; The Ratio and Root Tests
10.6 Alternating Series and Conditional Convergence
10.7 Power Series
10.8 Taylor and Maclaurin Series
10.9 Convergence of Taylor Series
10.10 Applications of Taylor Series
11. Parametric Equations and Polar Coordinates
11.1 Parametrizations of Plane Curves
11.2 Calculus with Parametric Curves
11.3 Polar Coordinates
11.4 Graphing Polar Coordinate Equations
11.5 Areas and Lengths in Polar Coordinates
11.6 Conic Sections
11.7 Conics in Polar Coordinates
12. Vectors and the Geometry of Space
12.1 ThreeDimensional Coordinate Systems
12.2 Vectors
12.3 The Dot Product
12.4 The Cross Product
12.5 Lines and Planes in Space
12.6 Cylinders and Quadric Surfaces
13. VectorValued Functions and Motion in Space
13.1 Curves in Space and Their Tangents
13.2 Integrals of Vector Functions; Projectile Motion
13.3 Arc Length in Space
13.4 Curvature and Normal Vectors of a Curve
13.5 Tangential and Normal Components of Acceleration
13.6 Velocity and Acceleration in Polar Coordinates
14. Partial Derivatives
14.1 Functions of Several Variables
14.2 Limits and Continuity in Higher Dimensions
14.3 Partial Derivatives
14.4 The Chain Rule
14.5 Directional Derivatives and Gradient Vectors
14.6 Tangent Planes and Differentials
14.7 Extreme Values and Saddle Points
14.8 Lagrange Multipliers
14.9 Taylor's Formula for Two Variables
14.10 Partial Derivatives with Constrained Variables
15. Multiple Integrals
15.1 Double and Iterated Integrals over Rectangles
15.2 Double Integrals over General Regions
15.3 Area by Double Integration
15.4 Double Integrals in Polar Form
15.5 Triple Integrals in Rectangular Coordinates
15.6 Applications
15.7 Triple Integrals in Cylindrical and Spherical Coordinates
15.8 Substitutions in Multiple Integrals
16. Integrals and Vector Fields
16.1 Line Integrals of Scalar Functions
16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux
16.3 Path Independence, Conservative Fields, and Potential Functions
16.4 Green's Theorem in the Plane
16.5 Surfaces and Area
16.6 Surface Integrals
16.7 Stokes' Theorem
16.8 The Divergence Theorem and a Unified Theory
17. SecondOrder Differential Equations (Online at www.goo.gl/MgDXPY)
17.1 SecondOrder Linear Equations
17.2 Nonhomogeneous Linear Equations
17.3 Applications
17.4 Euler Equations
17.5 PowerSeries Solutions
Appendices
1. Real Numbers and the Real Line
2. Mathematical Induction
3. Lines, Circles, and Parabolas
4. Proofs of Limit Theorems
5. Commonly Occurring Limits
6. Theory of the Real Numbers
7. Complex Numbers
8. The Distributive Law for Vector Cross Products
9. The Mixed Derivative Theorem and the Increment Theorem
Your questions answered
Introducing Pearson+. Reimagined learning, designed for you. Choose from one eTextbook or over 1,500 eTextbooks and study tools, all in one place, for one low monthly subscription. A new way to buy books that fits your budget. Make the most of your study time with offline access, enhanced search, notes and flashcards — to get organized, get the work done quicker and get results. Plus, with the app, put textbooks in your pocket and learn wherever. It's time to upgrade the textbook and simplify learning, so you can have time to live too.
Pearson eTextbook is an easytouse digital textbook available from Pearson+. Make it your own by adding notes and highlights. Download the Pearson+ mobile app to learn on the go, even offline. Listen on the go with our new audiobook feature, available for most titles.
When you choose a plan, you're signing up for a 4month 'term'. You can opt to make a onetime payment for the initial 4month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4month term has ended. You can turn on autorenew in My account at any time to continue your subscription before your 4month term has ended.
When you purchase a Pearson+ subscription, it will last 4 months. Before your initial 4month term ends, you can extend your subscription by turning autorenew on in My account.
If you turn autorenew on, we’ll automatically renew your subscription and charge you every month until you turn off autorenew. If you made a onetime payment for your initial 4month term, you’ll now pay monthly.
To avoid the next payment charge, make sure you turn auto renewal off 1 day before the auto renewal date. You can subscribe again after autorenew has been turned off by purchasing another Pearson+ subscription. We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details before your first monthly payment.
With a Multi Pearson+ subscription plan, you can download up to 10 titles on the Pearson+ app from My list on each of your authorized devices every month.
When you're using your Multi Pearson+ subscription plan in a browser, you can select and read from as many titles as you like.