Thomas' Calculus, 14th edition

  • Joel R. Hass, 
  • Christopher E. Heil, 
  • Maurice D. Weir

$16.99per month

Minimum 4-month term, pay monthly or pay $67.96 upfront

Includes:

  • Instant access to eTextbook
  • Search, highlight, notes, and more
  • Expert video lessons and practice questions
  • Q&A with experts and AI tutor
  • Printable study guides
14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Includes:

  • Instant access to eTextbook
  • Search, highlight, notes, and more
14-day refund guarantee

$16.99per month

Minimum 4-month term, pay monthly or pay $67.96 upfront

Includes:

  • Instant access to eTextbook
  • Search, highlight, notes, and more
  • Expert video lessons and practice questions
  • Q&A with experts and AI tutor
  • Printable study guides
14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Includes:

  • Instant access to eTextbook
  • Search, highlight, notes, and more
14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Includes:

  • Instant access to eTextbook
  • Search, highlight, notes, and more
14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Includes:

  • Instant access to eTextbook
  • Search, highlight, notes, and more
14-day refund guarantee

Learn more, spend less

  • Watch and learn

    Videos & animations bring concepts to life

  • Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized

    Access all your eTextbooks in one place

  • Easily continue access

    Keep learning with auto-renew

Overview

For three-semester or four-quarter courses in Calculus for students majoring in mathematics, engineering, or science


Clarity and precision

Thomas' Calculus helps students reach the level of mathematical proficiency and maturity you require, but with support for students who need it through its balance of clear and intuitive explanations, current applications, and generalized concepts. In the 14th Edition, new co-author Christopher Heil (Georgia Institute of Technology) partners with author Joel Hass to preserve what is best about Thomas' time-tested text while reconsidering every word and every piece of art with today's students in mind. The result is a text that goes beyond memorizing formulas and routine procedures to help students generalize key concepts and develop deeper understanding. 


Also available with MyLab Math

MyLab™ Math is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Within its structured environment, students practice what they learn, test their understanding, and pursue a personalized study plan that helps them absorb course material and understand difficult concepts. A full suite of Interactive Figures have been added to the accompanying MyLab Math course to further support teaching and learning. Enhanced Sample Assignments include just-in-time prerequisite review, help keep skills fresh with distributed practice of key concepts, and provide opportunities to work exercises without learning aids to help students develop confidence in their ability to solve problems independently.


Published by Pearson (January 1st 2021) - Copyright © 2018

ISBN-13: 9780137442997

Subject: Calculus

Category: Calculus

Overview

Table of Contents

  1. Functions
    • 1.1 Functions and Their Graphs
    • 1.2 Combining Functions; Shifting and Scaling Graphs
    • 1.3 Trigonometric Functions
    • 1.4 Graphing with Software
  2. Limits and Continuity
    • 2.1 Rates of Change and Tangent Lines to Curves
    • 2.2 Limit of a Function and Limit Laws
    • 2.3 The Precise Definition of a Limit
    • 2.4 One-Sided Limits
    • 2.5 Continuity
    • 2.6 Limits Involving Infinity; Asymptotes of Graphs
  3. Derivatives
    • 3.1 Tangent Lines and the Derivative at a Point
    • 3.2 The Derivative as a Function
    • 3.3 Differentiation Rules
    • 3.4 The Derivative as a Rate of Change
    • 3.5 Derivatives of Trigonometric Functions
    • 3.6 The Chain Rule
    • 3.7 Implicit Differentiation
    • 3.8 Related Rates
    • 3.9 Linearization and Differentials
  4. Applications of Derivatives
    • 4.1 Extreme Values of Functions on Closed Intervals
    • 4.2 The Mean Value Theorem
    • 4.3 Monotonic Functions and the First Derivative Test
    • 4.4 Concavity and Curve Sketching
    • 4.5 Applied Optimization
    • 4.6 Newton’S Method
    • 4.7 Antiderivatives
  5. Integrals
    • 5.1 Area and Estimating with Finite Sums
    • 5.2 Sigma Notation and Limits of Finite Sums
    • 5.3 The Definite Integral
    • 5.4 The Fundamental Theorem of Calculus
    • 5.5 Indefinite Integrals and the Substitution Method
    • 5.6 Definite Integral Substitutions and the Area Between Curves
  6. Applications of Definite Integrals
    • 6.1 Volumes Using Cross-Sections
    • 6.2 Volumes Using Cylindrical Shells
    • 6.3 Arc Length
    • 6.4 Areas of Surfaces of Revolution
    • 6.5 Work and Fluid Forces
    • 6.6 Moments and Centers of Mass
  7. Transcendental Functions
    • 7.1 Inverse Functions and Their Derivatives
    • 7.2 Natural Logarithms
    • 7.3 Exponential Functions
    • 7.4 Exponential Change and Separable Differential Equations
    • 7.5 Indeterminate Forms and L’Hôpital's Rule
    • 7.6 Inverse Trigonometric Functions
    • 7.7 Hyperbolic Functions
    • 7.8 Relative Rates of Growth
  8. Techniques of Integration
    • 8.1 Using Basic Integration Formulas
    • 8.2 Integration by Parts
    • 8.3 Trigonometric Integrals
    • 8.4 Trigonometric Substitutions
    • 8.5 Integration of Rational Functions by Partial Fractions
    • 8.6 Integral Tables and Computer Algebra Systems
    • 8.7 Numerical Integration
    • 8.8 Improper Integrals
    • 8.9 Probability
  9. First-Order Differential Equations
    • 9.1 Solutions, Slope Fields, and Euler’s Method
    • 9.2 First-Order Linear Equations
    • 9.3 Applications
    • 9.4 Graphical Solutions of Autonomous Equations
    • 9.5 Systems of Equations and Phase Planes
  10. Infinite Sequences and Series
    • 10.1 Sequences
    • 10.2 Infinite Series
    • 10.3 The Integral Test
    • 10.4 Comparison Tests
    • 10.5 Absolute Convergence; The Ratio and Root Tests
    • 10.6 Alternating Series and Conditional Convergence
    • 10.7 Power Series
    • 10.8 Taylor and Maclaurin Series
    • 10.9 Convergence of Taylor Series
    • 10.10 Applications of Taylor Series
  11. Parametric Equations and Polar Coordinates
    • 11.1 Parametrizations of Plane Curves
    • 11.2 Calculus with Parametric Curves
    • 11.3 Polar Coordinates
    • 11.4 Graphing Polar Coordinate Equations
    • 11.5 Areas and Lengths in Polar Coordinates
    • 11.6 Conic Sections
    • 11.7 Conics in Polar Coordinates
  12. Vectors and the Geometry of Space
    • 12.1 Three-Dimensional Coordinate Systems
    • 12.2 Vectors
    • 12.3 The Dot Product
    • 12.4 The Cross Product
    • 12.5 Lines and Planes in Space
    • 12.6 Cylinders and Quadric Surfaces
  13. Vector-Valued Functions and Motion in Space
    • 13.1 Curves in Space and Their Tangents
    • 13.2 Integrals of Vector Functions; Projectile Motion
    • 13.3 Arc Length in Space
    • 13.4 Curvature and Normal Vectors of a Curve
    • 13.5 Tangential and Normal Components of Acceleration
    • 13.6 Velocity and Acceleration in Polar Coordinates
  14. Partial Derivatives
    • 14.1 Functions of Several Variables
    • 14.2 Limits and Continuity in Higher Dimensions
    • 14.3 Partial Derivatives
    • 14.4 The Chain Rule
    • 14.5 Directional Derivatives and Gradient Vectors
    • 14.6 Tangent Planes and Differentials
    • 14.7 Extreme Values and Saddle Points
    • 14.8 Lagrange Multipliers
    • 14.9 Taylor’s Formula for Two Variables
    • 14.10 Partial Derivatives with Constrained Variables
  15. Multiple Integrals
    • 15.1 Double and Iterated Integrals over Rectangles
    • 15.2 Double Integrals over General Regions
    • 15.3 Area by Double Integration
    • 15.4 Double Integrals in Polar Form
    • 15.5 Triple Integrals in Rectangular Coordinates
    • 15.6 Applications
    • 15.7 Triple Integrals in Cylindrical and Spherical Coordinates
    • 15.8 Substitutions in Multiple Integrals
  16. Integrals and Vector Fields
    • 16.1 Line Integrals of Scalar Functions
    • 16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux
    • 16.3 Path Independence, Conservative Fields, and Potential Functions
    • 16.4 Green’s Theorem in the Plane
    • 16.5 Surfaces and Area
    • 16.6 Surface Integrals
    • 16.7 Stokes' Theorem
    • 16.8 The Divergence Theorem and a Unified Theory
  17. Second-Order Differential Equations (Online at www.goo.gl/MgDXPY)
    • 17.1 Second-Order Linear Equations
    • 17.2 Nonhomogeneous Linear Equations
    • 17.3 Applications
    • 17.4 Euler Equations
    • 17.5 Power-Series Solutions

Appendices

  1. Real Numbers and the Real Line
  2. Mathematical Induction
  3. Lines, Circles, and Parabolas
  4. Proofs of Limit Theorems
  5. Commonly Occurring Limits
  6. Theory of the Real Numbers
  7. Complex Numbers
  8. The Distributive Law for Vector Cross Products
  9. The Mixed Derivative Theorem and the Increment Theorem

Your questions answered

Pearson+ is your 1-stop shop with eTextbooks, study tools and exam prep features designed to help students get better grades in college. eTextbooks come with built-in tools that simplify studying, like flashcards, audiobook and search. Pearson+ also features Channels, which includes practice problems, study guides, Q&A with experts, video lessons that help you understand tricky topics and more—all in one place. Channels can be purchased separately or added on to your eTextbook at the time of purchase as part of the Study & Exam Prep Pack.

A Pearson eTextbook is an easy-to-use digital version of your book for class that includes upgraded study tools to help you learn how you learn best. Use enhanced search to find what you need within your eTextbook, highlight and make notes to mark important info, generate flashcards to test your knowledge, and use audio to listen to the text. Every feature is designed to help you learn more efficiently and get results. Plus, you can learn on the go with the Pearson+ app. Find this and more in your eTextbook, available in Pearson+.

The Study & Exam Prep Pack includes practice problems, study guides, Q&A with experts, Channels video lessons that help you understand tricky topics and more. It can be added on to your eTextbook or your MyLab and Mastering learning platform at the time of purchase.

Your eTextbook subscription gives you access for 4 months. You can make a one‑time payment for the initial 4‑month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4‑month term ends. You can turn on auto‑renew in My account at any time to continue your subscription before your 4‑month term ends.

When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.

If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.

To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.

Channels is a video platform with thousands of explanations, solutions and practice problems to help you do homework and prep for exams. Videos are personalized to your course, and tutors walk you through solutions. Plus, interactive AI‑powered summaries and a social community help you better understand lessons from class.

Channels is an additional tool to help you with your studies. This means you can use Channels even if your course uses a non‑Pearson textbook.

When you choose a Channels subscription, you're signing up for a 1‑month, 3‑month or 12‑month term and you make an upfront payment for your subscription. By default, these subscriptions auto‑renew at the frequency you select during checkout.

When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.