Digital Design: With an Introduction to the Verilog HDL, VHDL, and SystemVerilog, 6th edition
$16.99per month
Minimum 4-month term, pay monthly or pay $67.96 upfront
Includes:
- Instant access to eTextbook
- Search, highlights, notes, and more
- Expert video lessons and practice questions
- Videos, study help in multiple subjects. List in FAQs.
- Practice problems and study guides
- Q&A with experts and AI tutor
$10.99per month
Minimum 4-month term, pay monthly or pay $43.96 upfront
Includes:
- Instant access to eTextbook
- Search, highlights, notes, and more
$16.99per month
Minimum 4-month term, pay monthly or pay $67.96 upfront
Includes:
- Instant access to eTextbook
- Search, highlights, notes, and more
- Expert video lessons and practice questions
- Videos, study help in multiple subjects. List in FAQs.
- Practice problems and study guides
- Q&A with experts and AI tutor
$10.99per month
Minimum 4-month term, pay monthly or pay $43.96 upfront
Includes:
- Instant access to eTextbook
- Search, highlights, notes, and more
$10.99per month
Minimum 4-month term, pay monthly or pay $43.96 upfront
Includes:
- Instant access to eTextbook
- Search, highlights, notes, and more
$10.99per month
Minimum 4-month term, pay monthly or pay $43.96 upfront
Includes:
- Instant access to eTextbook
- Search, highlights, notes, and more
Access to this eTextbook title
Learn more, spend less
-
Listen on the go
Learn how you like with full eTextbook audio
-
Find it fast
Quickly navigate your eTextbook with search
-
Stay organized
Access all your eTextbooks in one place
-
Easily continue access
Keep learning with auto-renew
Overview
For introductory courses on digital design in an Electrical Engineering, Computer Engineering, or Computer Science department.
A clear and accessible approach to teaching the basic tools, concepts, and applications of digital design.
A modern update to a classic, authoritative text, Digital Design, 6th Edition teaches the fundamental concepts of digital design in a clear, accessible manner. The text presents the basic tools for the design of digital circuits and provides procedures suitable for a variety of digital applications. Like the previous editions, this edition of Digital Design supports a multimodal approach to learning, with a focus on digital design, regardless of language. Recognizing that three public-domain languages–Verilog, VHDL, and SystemVerilog–all play a role in design flows for today’s digital devices, the 5th Edition offers parallel tracks of presentation of multiple languages, but allows concentration on a single, chosen language.Published by Pearson (July 14th 2021) - Copyright © 2018
ISBN-13: 9780137501984
Subject: Electrical Engineering
Category: Digital Design
Overview
Preface
1 Digital Systems and Binary Numbers
1.1 Digital Systems
1.2 Binary Numbers
1.3 NumberBase Conversions
1.4 Octal and Hexadecimal Numbers
1.5 Complements of Numbers
1.6 Signed Binary Numbers
1.7 Binary Codes
1.8 Binary Storage and Registers
1.9 Binary Logic
2 Boolean Algebra and Logic Gates
2.1 Introduction
2.2 Basic Definitions
2.3 Axiomatic Definition of Boolean Algebra
2.4 Basic Theorems and Properties of Boolean Algebra
2.5 Boolean Functions
2.6 Canonical and Standard Forms
2.7 Other Logic Operations
2.8 Digital Logic Gates
2.9 Integrated Circuits
3 GateLevel Minimization
3.1 Introduction
3.2 The Map Method
3.3 FourVariable K-Map
3.4 ProductofSums Simplification
3.5 Don’tCare Conditions
3.6 NAND and NOR Implementation
3.7 Other TwoLevel Implementations
3.8 ExclusiveOR Function
3.9 Hardware Description Languages (HDLs)
4 Combinational Logic
4.1 Introduction
4.2 Combinational Circuits
4.3 Analysis of Combinational Circuits
4.4 Design Procedure
4.5 Binary Adder—Subtractor
4.6 Decimal Adder
4.7 Binary Multiplier
4.8 Magnitude Comparator
4.9 Decoders
4.10 Encoders
4.11 Multiplexers
4.12 HDL Models of Combinational Circuits
5 Synchronous Sequential Logic
5.1 Introduction
5.2 Sequential Circuits
5.3 Storage Elements: Latches
5.4 Storage Elements: FlipFlops
5.5 Analysis of Clocked Sequential Circuits
5.6 Synthesizable HDL Models of Sequential Circuits
5.7 State Reduction and Assignment
5.8 Design Procedure
6 Registers and Counters
6.1 Registers
6.2 Shift Registers
6.3 Ripple Counters
6.4 Synchronous Counters
6.5 Other Counters
6.6 HDL Models of Registers and Counters
7 Memory and Programmable Logic
7.1 Introduction
7.2 RandomAccess Memory
7.3 Memory Decoding
7.4 Error Detection and Correction
7.5 ReadOnly Memory
7.6 Programmable Logic Array
7.7 Programmable Array Logic
7.8 Sequential Programmable Devices
8 Design at the Register Transfer Level
8.1 Introduction
8.2 Register Transfer Level (RTL) Notation
8.3 RTL descriptions VERILOG (Edge- and Level-Sensitive Behaviors)
8.4 Algorithmic State Machines (ASMs)
8.5 Design Example (ASMD Chart)
8.6 HDL Description of Design Example
8.7 Sequential Binary Multiplier
8.8 Control Logic
8.9 HDL Description of Binary Multiplier
8.10 Design with Multiplexers
8.11 RaceFree Design (Software Race Conditions)
8.12 LatchFree Design (Why Waste Silicon?)
8.13 System Verilog–An Introduction
9 Laboratory Experiments with Standard ICs and FPGAs
9.1 Introduction to Experiments
9.2 Experiment 1: Binary and Decimal Numbers
9.3 Experiment 2: Digital Logic Gates
9.4 Experiment 3: Simplification of Boolean Functions
9.5 Experiment 4: Combinational Circuits
9.6 Experiment 5: Code Converters
9.7 Experiment 6: Design with Multiplexers
9.8 Experiment 7: Adders and Subtractors
9.9 Experiment 8: FlipFlops
9.10 Experiment 9: Sequential Circuits
9.11 Experiment 10: Counters
9.12 Experiment 11: Shift Registers
9.13 Experiment 12: Serial Addition
9.14 Experiment 13: Memory Unit
9.15 Experiment 14: Lamp Handball
9.16 Experiment 15: ClockPulse Generator
9.17 Experiment 16: Parallel Adder and Accumulator
9.18 Experiment 17: Binary Multiplier
9.19 HDL Simulation Experiments and Rapid Prototyping with FPGAs
10 Standard Graphic Symbols
10.1 RectangularShape Symbols
10.2 Qualifying Symbols
10.3 Dependency Notation
10.4 Symbols for Combinational Elements
10.5 Symbols for FlipFlops
10.6 Symbols for Registers
10.7 Symbols for Counters
10.8 Symbol for RAM
Appendix
Answers to Selected Problems
Index
Your questions answered
When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.
If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.
To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.
When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.
We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.
A Study & Exam Prep subscription includes video lessons, practice problems and other study tools. Get unlimited access to the full range of subjects:
Yes, the Study & Exam Prep Pack's feature is Channels, which can be purchased separately at any time. Simply go to Channels on the Pearson+ site and choose monthly, quarterly, or annual access, separate from your eTextbook subscription. Still deciding? Watch the first six videos free and buy it if you love it (we know you'll love it!).
Currently, they are the exact same offering. 'Study & Exam Prep Pack' is what we call 'Channels' when it is bundled with an eTextbook or bundled with MyLab & Mastering courseware. When purchased on its own, you will see it called Channels, still the same study & exam prep help you need.