Modern Operating Systems, 4th edition

  • Andrew S. Tanenbaum, 
  • Herbert Bos

Choose the option that's right for you

$9.99 / mo

4-month term, pay monthly or pay $39.96

Enjoy these features

  • Up to 2 devices
  • Exclusive offers

$14.99 / mo

4-month term, pay monthly or pay $59.96

Enjoy these features

  • Up to 2 devices
  • Exclusive offers

Learn more, spend less

  • Learn anytime, anywhere

    Get the app to access your eTextbook whenever you need it

  • Make it your own

    Your notes. Your highlights. Your eTextbook

  • Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized

    Access all your eTextbooks in one place

  • Access all your eTextbooks in one place

    Keep learning with auto-renew

Overview

Modern Operating Systems incorporates the latest developments in operating systems (OS) technologies and provides information on current research based on the author's experience as an operating systems researcher. You'll gain hands-on experience using simulation exercises and lab experiments.

Published by Pearson (July 14th 2021) - Copyright © 2015

ISBN-13: 9780137538638

Subject: Industrial Engineering

Category: Operating Systems

Table of contents

Brief Contents

  • CHAPTER 1 "INTRODUCTION"
    • 1.1 WHAT IS AN OPERATING SYSTEM?
      • 1.1.1 The Operating System as an Extended Machine
      • 1.1.2 The Operating System as a Resource Manager
    • 1.2 HISTORY OF OPERATING SYSTEMS
      • 1.2.1 The First Generation (1945-55): Vacuum Tubes
      • 1.2.2 The Second Generation (1955-65): Transistors and Batch Systems
      • 1.2.3 The Third Generation (1965-1980): ICs and Multiprogramming
      • 1.2.4 The Fourth Generation (1980-Present): Personal Computers
      • 1.2.5 The Fifth Generation (1990-Present): Mobile Computers
    • 1.3 COMPUTER HARDWARE REVIEW
      • 1.3.1 Processors
      • 1.3.2 Memory
      • 1.3.3 Disks
      • 1.3.4 I/O Devices
      • 1.3.5 Buses
      • 1.3.6 Booting the Computer
    • 1.4 THE OPERATING SYSTEM ZOO
      • 1.4.1 Mainframe Operating Systems
      • 1.4.2 Server Operating Systems
      • 1.4.3 Multiprocessor Operating Systems
      • 1.4.4 Personal Computer Operating Systems
      • 1.4.5 Handheld Computer Operating Systems
      • 1.4.6 Embedded Operating Systems.
      • 1.4.7 Sensor-Node Operating Systems
      • 1.4.8 Real-Time Operating Systems
      • 1.4.9 Smart Card Operating Systems
    • 1.5 OPERATING SYSTEM CONCEPTS
      • 1.5.1 Processes
      • 1.5.2 Address Spaces
      • 1.5.3 Files
      • 1.5.4 Input/Output
      • 1.5.5 Protection
      • 1.5.6 The Shell
      • 1.5.7 Ontogeny Recapitulates Phylogeny
    • 1.6 SYSTEM CALLS
      • 1.6.1 System Calls for Process Management
      • 1.6.2 System Calls for File Management
      • 1.6.3 System Calls for Directory Management
      • 1.6.4 Miscellaneous System Calls
      • 1.6.5 The Windows Win32 API
    • 1.7 OPERATING SYSTEM STRUCTURE
      • 1.7.1 Monolithic Systems
      • 1.7.2 Layered Systems
      • 1.7.3 Microkernels
      • 1.7.4 Client-Server Model
      • 1.7.5 Virtual Machines
      • 1.7.6 Exokernels
    • 1.8 THE WORLD ACCORDING TO C
      • 1.8.1 The C Language
      • 1.8.2 Header Files
      • 1.8.3 Large Programming Projects
      • 1.8.4 The Model of Run Time
    • 1.9 RESEARCH ON OPERATING SYSTEMS
    • 1.10 OUTLINE OF THE REST OF THIS BOOK
    • 1.11 METRIC UNITS
    • 1.12 SUMMARY
  • CHAPTER 2 "PROCESSES AND THREADS"
    • 2.1 PROCESSES
      • 2.1.1 The Process Model
      • 2.1.2 Process Creation
      • 2.1.3 Process Termination
      • 2.1.4 Process Hierarchies
      • 2.1.5 Process States
      • 2.1.6 Implementation of Processes
      • 2.1.7 Modeling Multiprogramming
    • 2.2 THREADS
      • 2.2.1 Thread Usage
      • 2.2.2 The Classical Thread Model
      • 2.2.3 POSIX Threads
      • 2.2.4 Implementing Threads in User Space
      • 2.2.5 Implementing Threads in the Kernel
      • 2.2.6 Hybrid Implementations
      • 2.2.7 Scheduler Activations
      • 2.2.8 Pop-Up Threads
      • 2.2.9 Making Single-Threaded Code Multithreaded
    • 2.3 INTERPROCESS COMMUNICATION
      • 2.3.1 Race Conditions
      • 2.3.2 Critical Regions
      • 2.3.3 Mutual Exclusion with Busy Waiting
      • 2.3.4 Sleep and Wakeup
      • 2.3.5 Semaphores
      • 2.3.6 Mutexes
      • 2.3.7 Monitors
      • 2.3.8 Message Passing
      • 2.3.9 Barriers
      • 2.3.10 Avoiding Locks: Read-Copy-Update
    • 2.4 SCHEDULING
      • 2.4.1 Introduction to Scheduling
      • 2.4.2 Scheduling in Batch Systems
      • 2.4.3 Scheduling in Interactive Systems
      • 2.4.4 Scheduling in Real-Time Systems
      • 2.4.5 Policy Versus Mechanism
      • 2.4.6 Thread Scheduling
    • 2.5 CLASSICAL IPC PROBLEMS
      • 2.5.1 The Dining Philosophers Problem
      • 2.5.2 The Readers and Writers Problem
    • 2.6 RESEARCH ON PROCESSES AND THREADS
    • 2.7 SUMMARY
  • CHAPTER 3 "MEMORY MANAGEMENT"
    • 3.1 NO MEMORY ABSTRACTION
    • 3.2 A MEMORY ABSTRACTION: ADDRESS SPACES
      • 3.2.1 The Notion of an Address Space
      • 3.2.2 Swapping
      • 3.2.3 Managing Free Memory
    • 3.3 VIRTUAL MEMORY
      • 3.3.1 Paging
      • 3.3.2 Page Tables
      • 3.3.3 Speeding Up Paging
      • 3.3.4 Page Tables for Large Memories
    • 3.4 PAGE REPLACEMENT ALGORITHMS
      • 3.4.1 The Optimal Page Replacement Algorithm
      • 3.4.2 The Not Recently Used Page Replacement Algorithm
      • 3.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm
      • 3.4.4 The Second-Chance Page Replacement Algorithm
      • 3.4.5 The Clock Page Replacement Algorithm
      • 3.4.6 The Least Recently Used (LRU) Page Replacement Algorithm
      • 3.4.7 Simulating LRU in Software
      • 3.4.8 The Working Set Page Replacement Algorithm
      • 3.4.9 The WSClock Page Replacement Algorithm
      • 3.4.10 Summary of Page Replacement Algorithms
    • 3.5 DESIGN ISSUES FOR PAGING SYSTEMS
      • 3.5.1 Local versus Global Allocation Policies
      • 3.5.2 Load Control
      • 3.5.3 Page Size
      • 3.5.4 Separate Instruction and Data Spaces
      • 3.5.5 Shared Pages
      • 3.5.6 Shared Libraries
      • 3.5.7 Mapped Files
      • 3.5.8 Cleaning Policy
      • 3.5.9 Virtual Memory Interface
    • 3.6 IMPLEMENTATION ISSUES
      • 3.6.1 Operating System Involvement with Paging
      • 3.6.2 Page Fault Handling
      • 3.6.3 Instruction Backup
      • 3.6.4 Locking Pages in Memory
      • 3.6.5 Backing Store
      • 3.6.6 Separation of Policy and Mechanism
    • 3.7 SEGMENTATION
      • 3.7.1 Implementation of Pure Segmentation
      • 3.7.2 Segmentation with Paging: MULTICS
      • 3.7.3 Segmentation with Paging: The Intel x86
    • 3.8 RESEARCH ON MEMORY MANAGEMENT
    • 3.9 SUMMARY
  • CHAPTER 4 "FILE SYSTEMS"
    • 4.1 FILES
      • 4.1.1 File Naming
      • 4.1.2 File Structure
      • 4.1.3 File Types
      • 4.1.4 File Access
      • 4.1.5 File Attributes
      • 4.1.6 File Operations
      • 4.1.7 An Example Program Using File-System Calls
    • 4.2 DIRECTORIES
      • 4.2.1 Single-Level Directory Systems
      • 4.2.2 Hierarchical Directory Systems
      • 4.2.3 Path Names
      • 4.2.4 Directory Operations
    • 4.3 FILE SYSTEM IMPLEMENTATION
      • 4.3.1 File-System Layout
      • 4.3.2 Implementing Files
      • 4.3.3 Implementing Directories
      • 4.3.4 Shared Files
      • 4.3.5 Log-Structured File Systems
      • 4.3.6 Journaling File Systems
      • 4.3.7 Virtual File Systems
    • 4.4 FILE-SYSTEM MANAGEMENT AND OPTIMIZATION
      • 4.4.1 Disk-Space Management
      • 4.4.2 File-System Backups
      • 4.4.3 File-System Consistency
      • 4.4.4 File-System Performance
      • 4.4.5 Defragmenting Disks
    • 4.5 EXAMPLE FILE SYSTEMS
      • 4.5.1 The MS-DOS File System
      • 4.5.2 The UNIX V7 File System
      • 4.5.3 CD-ROM File Systems
    • 4.6 RESEARCH ON FILE SYSTEMS
    • 4.7 SUMMARY
  • CHAPTER 5 "INPUT/OUTPUT"
    • 5.1 PRINCIPLES OF I/O HARDWARE
      • 5.1.1 I/O Devices
      • 5.1.2 Device Controllers
      • 5.1.3 Memory-Mapped I/O
      • 5.1.4 Direct Memory Access
      • 5.1.5 Interrupts Revisited
    • 5.2 PRINCIPLES OF I/O SOFTWARE
      • 5.2.1 Goals of the I/O Software
      • 5.2.2 Programmed I/O
      • 5.2.3 Interrupt-Driven I/O
      • 5.2.4 I/O Using DMA
    • 5.3 I/O SOFTWARE LAYERS
      • 5.3.1 Interrupt Handlers
      • 5.3.2 Device Drivers
      • 5.3.3 Device-Independent I/O Software
      • 5.3.4 User-Space I/O Software
    • 5.4 DISKS
      • 5.4.1 Disk Hardware
      • 5.4.2 Disk Formatting
      • 5.4.3 Disk Arm Scheduling Algorithms
      • 5.4.4 Error Handling
      • 5.4.5 Stable Storage
    • 5.5 CLOCKS
      • 5.5.1 Clock Hardware
      • 5.5.2 Clock Software
      • 5.5.3 Soft Timers
    • 5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR
      • 5.6.1 Input Software
      • 5.6.2 Output Software
    • 5.7 THIN CLIENTS
    • 5.8 POWER MANAGEMENT
      • 5.8.1 Hardware Issues
      • 5.8.2 Operating System Issues
      • 5.8.3 Application Program Issues
    • 5.9 RESEARCH ON INPUT/OUTPUT
    • 5.10 SUMMARY
  • CHAPTER 6 "DEADLOCKS"
    • 6.1 RESOURCES
      • 6.1.1 Preemptable and Nonpreemptable Resources
      • 6.1.2 Resource Acquisition
    • 6.2 INTRODUCTION TO DEADLOCKS
      • 6.2.1 Conditions for Resource Deadlocks
      • 6.2.2 Deadlock Modeling
    • 6.3 THE OSTRICH ALGORITHM
    • 6.4 DEADLOCK DETECTION AND RECOVERY
      • 6.4.1 Deadlock Detection with One Resource of Each Type
      • 6.4.2 Deadlock Detection with Multiple Resources of Each Type
      • 6.4.3 Recovery from Deadlock
    • 6.5 DEADLOCK AVOIDANCE
      • 6.5.1 Resource Trajectories
      • 6.5.2 Safe and Unsafe States
      • 6.5.3 The Banker's Algorithm for a Single Resource
      • 6.5.4 The Banker's Algorithm for Multiple Resources
    • 6.6 DEADLOCK PREVENTION
      • 6.6.1 Attacking the Mutual Exclusion Condition
      • 6.6.2 Attacking the Hold and Wait Condition
      • 6.6.3 Attacking the No Preemption Condition
      • 6.6.4 Attacking the Circular Wait Condition
    • 6.7 OTHER ISSUES
      • 6.7.1 Two-Phase Locking
      • 6.7.2 Communication Deadlocks
      • 6.7.3 Livelock
      • 6.7.4 Starvation
    • 6.8 RESEARCH ON DEADLOCKS
    • 6.9 SUMMARY
  • CHAPTER 7 "VIRTUALIZATION AND THE CLOUD"
    • 7.1 HISTORY
    • 7.2 REQUIREMENTS FOR VIRTUALIZATION
    • 7.3 TYPE 1 AND TYPE 2 HYPERVISORS
    • 7.4 TECHNIQUES FOR EFFICIENT VIRTUALIZATION
      • 7.4.1 Virtualizing the Unvirtualizable
      • 7.4.2 The Cost of Virtualization
    • 7.5 ARE HYPERVISORS MICROKERNELS DONE RIGHT?
    • 7.6 MEMORY VIRTUALIZATION
    • 7.7 I/O VIRTUALIZATION
    • 7.8 VIRTUAL APPLIANCES
    • 7.9 VIRTUAL MACHINES ON MULTICORE CPUS
    • 7.10 LICENSING ISSUES
    • 7.11 CLOUDS
      • 7.11.1 Clouds as a Service
      • 7.11.2 Virtual Machine Migration
      • 7.11.3 Checkpointing
    • 7.12 CASE STUDY: VMWARE
      • 7.12.1 The early history of VMware
      • 7.12.2 VMware Workstation
      • 7.12.3 Challenges in Bringing Virtualization to the x86
      • 7.12.4 VMware Workstation: Solution Overview
      • 7.12.5 The Evolution of VMware Workstation
      • 7.12.6 ESX Server: VMware's type-1 hypervisor
    • 7.13 RESEARCH ON VIRTUALIZATION AND THE CLOUD
  • CHAPTER 8 "MULTIPLE PROCESSOR SYSTEMS"
    • 8.1 MULTIPROCESSORS
      • 8.1.1 Multiprocessor Hardware
      • 8.1.2 Multiprocessor Operating System Types
      • 8.1.3 Multiprocessor Synchronization
      • 8.1.4 Multiprocessor Scheduling
    • 8.2 MULTICOMPUTERS
      • 8.2.1 Multicomputer Hardware
      • 8.2.2 Low-Level Communication Software
      • 8.2.3 User-Level Communication Software
      • 8.2.4 Remote Procedure Call
      • 8.2.5 Distributed Shared Memory
      • 8.2.6 Multicomputer Scheduling
      • 8.2.7 Load Balancing
    • 8.3 DISTRIBUTED SYSTEMS
      • 8.3.1 Network Hardware
      • 8.3.2 Network Services and Protocols
      • 8.3.3 Document-Based Middleware
      • 8.3.4 File-System-Based Middleware
      • 8.3.5 Object-Based Middleware
      • 8.3.6 Coordination-Based Middleware
    • 8.4 RESEARCH ON MULTIPLE PROCESSOR SYSTEMS
    • 8.5 SUMMARY
  • CHAPTER 9 "SECURITY"
    • 9.1 THE SECURITY ENVIRONMENT
      • 9.1.1 Threats
      • 9.1.2 Attackers
    • 9.2 OPERATING SYSTEMS SECURITY
      • 9.2.1 Can We Build Secure Systems?
      • 9.2.2 Trusted Computing Base
    • 9.3 CONTROLLING ACCESS TO RESOURCES
      • 9.3.1 Protection Domains
      • 9.3.2 Access Control Lists
      • 9.3.3 Capabilities
    • 9.4 FORMAL MODELS OF SECURE SYSTEMS
      • 9.4.1 Multilevel Security
      • 9.4.2 Covert Channels
    • 9.5 BASICS OF CRYPTOGRAPHY
      • 9.5.1 Secret-Key Cryptography
      • 9.5.2 Public-Key Cryptography
      • 9.5.3 One-Way Functions
      • 9.5.4 Digital Signatures
      • 9.5.5 Trusted Platform Module
    • 9.6 AUTHENTICATION
      • 9.6.1 Authentication Using a Physical Object
      • 9.6.2 Authentication Using Biometrics
    • 9.7 EXPLOITING SOFTWARE
      • 9.7.1 Buffer Overflow Attacks
      • 9.7.2 Format String Attacks
      • 9.7.3 Dangling Pointers
      • 9.7.4 Null Pointer Dereference Attacks
      • 9.7.5 Integer Overflow Attacks
      • 9.7.6 Command Injection Attacks
      • 9.7.7 Time of Check to Time of Use (TOCTOU) Attacks
    • 9.8 INSIDER ATTACKS
      • 9.8.1 Logic Bombs
      • 9.8.2 Back Doors
      • 9.8.3 Login Spoofing
    • 9.9 MALWARE
      • 9.9.1 Trojan Horses
      • 9.9.2 Viruses
      • 9.9.3 Worms
      • 9.9.4 Spyware
      • 9.9.5 Rootkits
    • 9.10 DEFENSES
      • 9.10.1 Firewalls
      • 9.10.2 Antivirus and Anti-Antivirus Techniques
      • 9.10.3 Code Signing
      • 9.10.4 Jailing
      • 9.10.5 Model-Based Intrusion Detection
      • 9.10.6 Encapsulating Mobile Code
      • 9.10.7 Java Security
    • 9.11 RESEARCH ON SECURITY
    • 9.12 SUMMARY
  • CHAPTER 10 "CASE STUDY 1: UNIX, LINUX, AND ANDROID"
    • 10.1 HISTORY OF UNIX AND LINUX
      • 10.1.1 UNICS
      • 10.1.2 PDP-11 UNIX
      • 10.1.3 Portable UNIX
      • 10.1.4 Berkeley UNIX
      • 10.1.5 Standard UNIX
      • 10.1.6 MINIX
      • 10.1.7 Linux
    • 10.2 OVERVIEW OF LINUX
      • 10.2.1 Linux Goals
      • 10.2.2 Interfaces to Linux
      • 10.2.3 The Shell
      • 10.2.4 Linux Utility Programs
      • 10.2.5 Kernel Structure
    • 10.3 PROCESSES IN LINUX
      • 10.3.1 Fundamental Concepts
      • 10.3.2 Process Management System Calls in Linux
      • 10.3.3 Implementation of Processes and Threads in Linux
      • 10.3.4 Scheduling in Linux
      • 10.3.5 Booting Linux
    • 10.4 MEMORY MANAGEMENT IN LINUX
      • 10.4.1 Fundamental Concepts
      • 10.4.2 Memory Management System Calls in Linux
      • 10.4.3 Implementation of Memory Management in Linux
      • 10.4.4 Paging in Linux
    • 10.5 INPUT/OUTPUT IN LINUX
      • 10.5.1 Fundamental Concepts
      • 10.5.2 Networking
      • 10.5.3 Input/Output System Calls in Linux
      • 10.5.4 Implementation of Input/Output in Linux
      • 10.5.5 Modules in Linux
    • 10.6 THE LINUX FILE SYSTEM
      • 10.6.1 Fundamental Concepts
      • 10.6.2 File System Calls in Linux
      • 10.6.3 Implementation of the Linux File System
      • 10.6.4 NFS: The Network File System
    • 10.7 SECURITY IN LINUX
      • 10.7.1 Fundamental Concepts
      • 10.7.2 Security System Calls in Linux
      • 10.7.3 Implementation of Security in Linux
    • 10.8 ANDROID
    • 10.9 SUMMARY
  • CHAPTER 11 "CASE STUDY 2: WINDOWS 8"
    • 11.1 HISTORY OF WINDOWS THROUGH WINDOWS 8.1
      • 11.1.1 1980s: MS-DOS
      • 11.1.2 1990s: MS-DOS-based Windows
      • 11.1.3 2000s: NT-based Windows
      • 11.1.4 Windows Vista
      • 11.1.5 2010s: Modern Windows
    • 11.2 PROGRAMMING WINDOWS
      • 11.2.1 The Native NT Application Programming Interface
      • 11.2.2 The Win32 Application Programming Interface
      • 11.2.3 The Windows Registry
    • 11.3 SYSTEM STRUCTURE
      • 11.3.1 Operating System Structure
      • 11.3.2 Booting Windows
      • 11.3.3 Implementation of the Object Manager
      • 11.3.4 Subsystems, DLLs, and User-Mode Services
    • 11.4 PROCESSES AND THREADS IN WINDOWS
      • 11.4.1 Fundamental Concepts
      • 11.4.2 Job, Process, Thread, and Fiber Management API Calls
      • 11.4.3 Implementation of Processes and Threads
    • 11.5 MEMORY MANAGEMENT
      • 11.5.1 Fundamental Concepts
      • 11.5.2 Memory Management System Calls
      • 11.5.3 Implemen

Your questions answered

Choose from one eTextbook or over 1,500 eTextbooks and study tools, all in one place, for one low monthly subscription. A Single plan includes the use of 1 eTextbook title and study tools. A Multi plan gives you access to more than 1,500 eTextbook titles and study tools. Plus, with the app, put textbooks in your pocket and learn wherever.

Make the most of your study time with offline access, enhanced search, notes and flashcards — to get organized, get the work done quicker and get results.

A Pearson eTextbook is an easy-to-use digital version of the book. You can add notes and highlights, plus learn on the go with the Pearson+ mobile app. Listen on the go with the audiobook feature, available for most titles.

When you choose a plan, you're signing up for a 4-month 'term'. You can opt to make a one-time payment for the initial 4-month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4-month term has ended. You can turn on auto-renew in My account at any time to continue your subscription before your 4-month term has ended.

When you purchase a Pearson+ subscription, it will last 4 months. Before your initial 4-month term ends, you can extend your subscription by turning auto-renew on in My account.

If you turn auto-renew on, we’ll automatically renew your subscription and charge you every month until you turn off auto-renew. If you made a one-time payment for your initial 4-month term, you’ll now pay monthly.

To avoid the next payment charge, make sure you turn auto renewal off 1 day before the auto renewal date. You can subscribe again after auto-renew has been turned off by purchasing another Pearson+ subscription. We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details before your first monthly payment.

With a Multi Pearson+ subscription plan, you can download up to 10 titles from your library on each of your authorized smartphone and tablet devices every month.

When you’re using your Multi Pearson+ subscription plan in a browser, you can select and read from as many titles as you like.