Statics and Strength of Materials for Architecture and Building Construction, 4th edition

  • Barry S. Onouye, 
  • Kevin Kane

Your access includes:

  • Search, highlight, and take notes
  • Easily create flashcards
  • Use the app for access anywhere
  • 14-day refund guarantee

$10.99per month

4-month term, pay monthly or pay $43.96

Learn more, spend less

  • Special partners and offers

    Enjoy perks from special partners and offers for students

  • Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized

    Access all your eTextbooks in one place

  • Easily continue access

    Keep learning with auto-renew


1. Introduction
1.1. Definition of Structure
1.2. Structural Design
1.3. Parallels in Nature
1.4. Loads on Structures
1.5. Basic Functional Requirements
1.6. Architectural Issues

2. Statics
2.1. Characteristics of a Force
2.2. Vector Addition
2.3. Force Systems
2.4. Equilibrium Equations: Two-Dimensional
2.5. Free-Body Diagrams of Rigid Bodies
2.6. Statical Indeterminacy and Improper Constraints

3. Analysis of Selected Determinate Structural Systems
3.1. Equilibrium of a Particle
3.2. Equilibrium of Rigid Bodies
3.3. Plane Trusses
3.4. Pinned Frames (Multiforce Members)
3.5. Three-Hinged Arches
3.6. Retaining Walls

4. Load Tracing
4.1. Load Tracing
4.2. Lateral Stability Load Tracing

5. Strength of Materials
5.1. Stress and Strain
5.2. Elasticity, Strength, and Deformation
5.3. Other Material Properties
5.4. Thermal Effects
5.5. Statically Indeterminate Members (Axially Loaded)

6. Cross-Sectional Properties of Structural Members
6.1. Center of Gravity-Centroids
6.2. Moment of Inertia of an Area
6.3. Moment of Inertia of Composite Areas
6.4. Radius of Gyration

7. Bending and Shear in Simple Beams
7.1. Classification of Beams and Loads
7.2. Shear and Bending Moment
7.3. Equilibrium Method for Shear and Moment Diagrams
7.4. Relationship Between Load, Transverse Shear, and Bending Moment
7.5. Semi-graphical Method for Load, Shear, and Moment Diagrams

8. Bending and Shear Stresses in Beams
8.1. Flexural Strain
8.2. Flexural (Bending) Stress Equation
8.3. Shearing Stress-Longitudinal and Transverse
8.4. Development of the General Shear Stress Equation
8.5. Deflection in Beams
8.6. Lateral Buckling in Beams
8.7. Introduction to Load Resistance Factor Design (LRFD)

9. Column Analysis and Design
9.1. Short and Long Columns-Modes of Failure
9.2. End Support Conditions and Lateral Bracing
9.3. Axially Loaded Steel Columns
9.4. Axially Loaded Wood Columns
9.5. Columns Subjected to Combined Loading or Eccentricity

10. Structural Connections
10.1. Steel Bolted Connections
10.2. Welded Connections
10.3. Common Framing Details in Steel

11.1. Initiation of Project-Pre-design
11.2. Design Process
11.3. Schematic Design
11.4. Design Development and Construction Documents
11.5. Integration of Building Systems
11.6. Construction Sequence
11.7. Conclusion

Tables for STRUCTURAL Design
Lumber Section Properties
(a) Dimensioned Sizes-Rafters, Joists, and Studs
(b) Beams and Columns
Allowable Stress Design for Shapes Used as Beams
Structural Steel-Wide-Flange Shapes
Structural Steel-American Standard Shapes and Channels
Structural Steel-Tubing (square) and Pipe
Structural Steel-Angles
Definition of Metric (S.I.) Terms and Conversion Tables
Wide Flange Shapes (Abridged Listing)-S.I. Metric
Elastic Section Modulus-U.S. and S.I.
Western Glue-Laminated Sections-U.S. and S.I. Metric
Plastic Section Modulus -- Selected Beam Shapes

Published by Pearson (July 14th 2021) - Copyright © 2012

ISBN-13: 9780137547364

Subject: Construction Management & Civil Technology

Category: Construction Methods & Materials

Your questions answered

Pearson+ is your one-stop shop, with eTextbooks and study videos designed to help students get better grades in college.

A Pearson eTextbook is an easy‑to‑use digital version of the book. You'll get upgraded study tools, including enhanced search, highlights and notes, flashcards and audio. Plus learn on the go with the Pearson+ app.

Your eTextbook subscription gives you access for 4 months. You can make a one‑time payment for the initial 4‑month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4‑month term ends. You can turn on auto‑renew in My account at any time to continue your subscription before your 4‑month term ends.

When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.

If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.

To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.

Channels is a video platform with thousands of explanations, solutions and practice problems to help you do homework and prep for exams. Videos are personalized to your course, and tutors walk you through solutions. Plus, interactive AI‑powered summaries and a social community help you better understand lessons from class.

Channels is an additional tool to help you with your studies. This means you can use Channels even if your course uses a non‑Pearson textbook.

When you choose a Channels subscription, you're signing up for a 1‑month, 3‑month or 12‑month term and you make an upfront payment for your subscription. By default, these subscriptions auto‑renew at the frequency you select during checkout.

When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.