Sklar/Harris-Digital Communications: Fundamentals and Applications,3/e

Sklar/Harris-Digital Communications: Fundamentals and Applications,3/e, 3rd edition

  • Bernard Sklar, 
  • Fredric J. Harris

Choose the option that's right for you

Single

$9.99 / mo

4-month minimum term for $39.96

  • Access this eText title
  • Up to 2 devices

Multi

$14.99 / mo

4-month minimum term for $59.96

  • Access over 1,500 titles
  • Up to 2 devices
  • Discounted tutor access

Learn more, spend less

  • Icon

    Listen on the go

    Learn how you like with full eText audio

  • Icon

    Learn anytime, anywhere

    Get the app to access your eText whenever you need it

  • Icon

    Make it your own

    Your notes. Your highlights. Your eText

  • Icon

    Find it fast

    Quickly navigate your eText with search

  • Icon

    Stay organized

    Access all your eTexts in one place

Overview

The Definitive, Comprehensive Guide to Cutting-Edge Millimeter Wave Wireless Design

“This is a great book on mmWave systems that covers many aspects of the technology targeted for beginners all the way to the advanced users. The authors are some of the most credible scholars I know of who are well respected by the industry. I highly recommend studying this book in detail.”
—Ali Sadri, Ph.D., Sr. Director, Intel Corporation, MCG mmWave Standards and Advanced Technologies

Millimeter wave (mmWave) is today’s breakthrough frontier for emerging wireless mobile cellular networks, wireless local area networks, personal area networks, and vehicular communications. In the near future, mmWave applications, devices, and networks will change our world.

¿

In Millimeter Wave Wireless Communications, four of the field’s pioneers, including Theodore S. Rappaport, Robert W. Heath, Robert C. Daniels, and James N. Murdock, draw on their vast experience to empower engineers at all levels to succeed with mmWave. They deliver fundamental, end-to-end coverage of all aspects of future mmWave wireless communications systems.

¿

The authors explain new multi-Gigabit per second products and applications, mmWave signal propagation, analog and digital circuit design, mmWave antenna designs, and current and emerging wireless standards. They cover comprehensive mmWave wireless design issues for 60 GHz and other mmWave bands, from channel to antenna to receiver, introducing emerging design techniques that will be invaluable for research engineers in both industry and academia.

¿

Topics include

  • Digital communication: baseband signal/channel models, modulation, equalization, error control coding, multiple input multiple output (MIMO) principles, and hardware architectures
  • Radio wave propagation characteristics: indoor and outdoor channel models and beam combining
  • Antennas/antenna arrays, including on-chip and in-package antennas, fabrication, and packaging
  • Analog circuit design: mmWave transistors, fabrication, and transceiver design approaches
  • Baseband circuit design: multi–gigabit-per-second, high-fidelity DAC and ADC converters
  • Physical layer: algorithmic choices, design considerations, and impairment solutions; and how to overcome clipping, quantization, and nonlinearity
  • Higher-layer design: beam adaptation protocols, relaying, multimedia transmission, and multiband considerations
  • 60 GHz standardization: IEEE 802.15.3c for WPAN, Wireless HD, ECMA-387, IEEE 802.11ad, Wireless Gigabit Alliance (WiGig)

Published by Pearson (July 12th 2021) - Copyright © 2021

ISBN-13: 9780137569076

Subject: Bioengineering & Chemical Engineering

Category: Chemical Engineering

Table of contents

Preface xvii

Acknowledgments xxi

About the Authors xxiii

 

Part I: Prerequisites 1

 

Chapter 1: Introduction 3

1.1 The Frontier: Millimeter Wave Wireless 3

1.2 A Preview of MmWave Implementation Challenges 17

1.3 Emerging Applications of MmWave Communications 19

1.4 Contributions of This Textbook 27

1.5 Outline of This Textbook 28

1.6 Symbols and Common De_nitions 31

1.7 Chapter Summary 32

 

Chapter 2: Wireless Communication Background 33

2.1 Introduction 33

2.2 Complex Baseband Representation 34

2.3 Digital Modulation 39

2.4 Equalization in the Time Domain 49

2.5 Equalization in the Frequency Domain 56

2.6 Error Control Coding 62

2.7 Estimation and Synchronization 72

2.8 Multiple Input Multiple Output (MIMO) Communication 81

2.9 Hardware Architectures 88

2.10 System Architecture 91

2.11 Chapter Summary 95

 

Part II: Fundamentals 97

 

Chapter 3: Radio Wave Propagation for MmWave 99

3.1 Introduction 99

3.2 Large-Scale Propagation Channel E_ects 101

3.3 Small-Scale Channel E_ects 126

3.4 Spatial Characterization of Multipath and Beam Combining 132

3.5 Angle Spread and Multipath Angle of Arrival 135

3.6 Antenna Polarization 138

3.7 Outdoor Channel Models 139

3.8 Indoor Channel Models 166

3.9 Chapter Summary 184

 

Chapter 4: Antennas and Arrays for MmWave Applications 187

4.1 Introduction 187

4.2 Fundamentals of On-Chip and In-Package MmWave Antennas 189

4.3 The On-Chip Antenna Environment 198

4.4 In-Package Antennas 209

4.5 Antenna Topologies for MmWave Communications 211

4.6 Techniques to Improve Gain of On-Chip Antennas 225

4.7 Adaptive Antenna Arrays | Implementations for MmWave Communications 235

4.8 Characterization of On-Chip Antenna Performance 252

4.9 Chapter Summary 257

 

Chapter 5: MmWave RF and Analog Devices and Circuits 259

5.1 Introduction 259

5.2 Basic Concepts for MmWave Transistors and Devices 260

5.3 S-Parameters, Z-Parameters, Y-Parameters, and ABCD-Parameters 263

5.4 Simulation, Layout, and CMOS Production of MmWave Circuits 267

5.5 Transistors and Transistor Models 273

5.6 More Advanced Models for MmWave Transistors 279

5.7 Introduction to Transmission Lines and Passives 288

5.8 Basic Transistor Con_gurations 308

5.9 Sensitivity and Link Budget Analysis for MmWave Radios 314

5.10 Important Metrics for Analog MmWave Devices 317

5.11 Analog MmWave Components 323

5.12 Consumption Factor Theory 370

5.13 Chapter Summary 382

 

Chapter 6: Multi-Gbps Digital Baseband Circuits 383

6.1 Introduction 383

6.2 Review of Sampling and Conversion for ADCs and DACs 384

6.3 Device Mismatches: An Inhibitor to ADCs and DACs 393

6.4 Basic Analog-to-Digital Conversion Circuitry: Comparators 394

6.5 Goals and Challenges in ADC Design 403

6.6 Encoders 407

6.7 Trends and Architectures for MmWave Wireless ADCs 409

6.8 Digital-to-Analog Converters (DACs) 421

6.9 Chapter Summary 431

 

Part III: MmWave Design and Applications 433

 

Chapter 7: MmWave Physical Layer Design and Algorithms 435

7.1 Introduction 435

7.2 Practical Transceivers 436

7.3 High-Throughput PHYs 444

7.4 PHYs for Low Complexity, High E_ciency 461

7.5 Future PHY Considerations 464

7.6 Chapter Summary 469

 

Chapter 8: Higher Layer Design Considerations for MmWave 471

8.1 Introduction 471

8.2 Challenges when Networking MmWave Devices 472

8.3 Beam Adaptation Protocols 481

8.4 Relaying for Coverage Extension 487

8.5 Support for Multimedia Transmission 493

8.6 Multiband Considerations 497

8.7 Performance of Cellular Networks 500

8.8 Chapter Summary 504

 

Chapter 9: MmWave Standardization 507

9.1 Introduction 507

9.2 60 GHz Spectrum Regulation 509

9.3 IEEE 802.15.3c 512

9.4 WirelessHD 550

9.5 ECMA-387 555

9.6 IEEE 802.11ad 562

9.7 WiGig 582

9.8 Chapter Summary 583

 

Bibliography 585

List of Abbreviations 653

Index 657

Your questions answered

Introducing Pearson+. Reimagined learning, designed for you. Choose from one eText or over 1,500 eTexts and study tools, all in one place, for one low monthly subscription. A new way to buy books that fits your budget. Make the most of your study time with offline access, enhanced search, notes and flashcards — to get organized, get the work done quicker and get results. Plus, with the app, put textbooks in your pocket and learn wherever. It's time to upgrade the textbook and simplify learning, so you can have time to live too.

Pearson eText is an easy-to-use digital textbook available from Pearson+. Make it your own by adding notes and highlights. Download the Pearson+ mobile app to learn on the go, even offline. Listen on the go with our new audiobook feature, available for most titles.

When you choose a plan, you're signing up for a 4-month term. We will charge your payment method each month until your 4-month term has ended. After that, we'll automatically renew your subscription and charge you on a month-to-month basis unless you turn off auto-renewal in My account.

When you purchase a Pearson+ subscription, it will last a minimum of 4 months, and then automatically renew each month thereafter unless you turn off auto-renew in My account.

If you want to stop your subscription at the end of your 4-month term, simply turn off auto-renew from My account. To avoid the next payment charge, make sure you turn auto renewal off 1 day before the auto renewal date.

You can subscribe again after auto-renew has been turned off by purchasing another Pearson+ subscription.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details before your first monthly payment.

With a Multi Pearson+ subscription plan, you can download up to 5 titles on the Pearson+ app from My list on each of your authorized devices every month.

When you're using your Multi Pearson+ subscription plan in a browser, you can select and read from as many titles as you like.