Mechanics of Materials, 11th edition

  • Russell C. Hibbeler

Your access includes:

  • Search, highlight, notes, and more
  • Easily create flashcards
  • Use the app for access anywhere
  • 14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Learn more, spend less

  • Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized

    Access all your eTextbooks in one place

  • Easily continue access

    Keep learning with auto-renew


Mechanics of Materials excels in providing a clear and thorough presentation of the theory and application of mechanics of materials principles. Drawing upon his decades of classroom experience and his knowledge of how students learn, Professor Hibbeler provides highly visual, methodical applications to help you conceptualize and master difficult concepts. A variety of problem types stress realistic situations encountered in the field, with several levels of difficulty to give you the practice you need to excel in your courses and career.

The 11th Edition features approximately 30%, or about 430 problems, which involve applications to many different fields of engineering.

If you are not using Mastering Engineering, you can purchase access to the videos that accompany this title here.

Published by Pearson (July 7th 2022) - Copyright © 2023

ISBN-13: 9780137605385

Subject: Engineering Mechanics

Category: Mechanics of Materials


  1. Stress
    • 1.1 Introduction
    • 1.2 Equilibrium of a Deformable Body
    • 1.3 Stress
    • 1.4 Average Normal Stress in an Axially Loaded Bar
    • 1.5 Average Shear Stress
    • 1.6 Allowable Stress Design
    • 1.7 Limit State Design
  2. Strain
    • 2.1 Deformation
    • 2.2 Strain
  3. Mechanical Properties of Materials
    • 3.1 The Tension and Compression Test
    • 3.2 The Stress--Strain Diagram
    • 3.3 Stress--Strain Behavior of Ductile and Brittle Materials
    • 3.4 Strain Energy
    • 3.5 Poisson's Ratio
    • 3.6 The Shear Stress--Strain Diagram
    • *3.7 Failure of Materials Due to Creep and Fatigue
  4. Axial Load
    • 4.1 Saint-Venant's Principle
    • 4.2 Elastic Deformation of an Axially Loaded Member
    • 4.3 Principle of Superposition
    • 4.4 Statically Indeterminate Axially Loaded Members
    • 4.5 The Force Method of Analysis for Axially Loaded Members
    • 4.6 Thermal Stress
    • 4.7 Stress Concentrations
    • *4.8 Inelastic Axial Deformation
    • *4.9 Residual Stress
  5. Torsion
    • 5.1 Torsional Deformation of a Circular Shaft
    • 5.2 The Torsion Formula
    • 5.3 Power Transmission
    • 5.4 Angle of Twist
    • 5.5 Statically Indeterminate Torque-Loaded Members
    • *5.6 Solid Noncircular Shafts
    • *5.7 Thin-Walled Tubes Having Closed Cross Sections
    • 5.8 Stress Concentration
    • *5.9 Inelastic Torsion
    • *5.10 Residual Stress
  6. Bending
    • 6.1 Shear and Moment Diagrams
    • 6.2 Graphical Method for Constructing Shear and Moment Diagrams
    • 6.3 Bending Deformation of a Straight Member
    • 6.4 The Flexure Formula
    • 6.5 Unsymmetric Bending
    • *6.6 Composite Beams
    • *6.7 Reinforced Concrete Beams
    • *6.8 Curved Beams
    • 6.9 Stress Concentrations
    • *6.10 Inelastic Bending
  7. Transverse Shear
    • 7.1 Shear in Straight Members
    • 7.2 The Shear Formula
    • 7.3 Shear Flow in Built-Up Members
    • 7.4 Shear Flow in Thin-Walled Members
    • *7.5 Shear Center for Open Thin-Walled Members
  8. Combined Loadings
    • 8.1 Thin-Walled Pressure Vessels
    • 8.2 State of Stress Caused by Combined Loadings
  9. Stress Transformation
    • 9.1 Plane-Stress Transformation
    • 9.2 General Equations of Plane-Stress Transformation
    • 9.3 Principal Stresses and Maximum In-Plane Shear Stress
    • 9.4 Mohr's Circle-Plane Stress
    • 9.5 Absolute Maximum Shear Stress
  10. Strain Transformation
    • 10.1 Plane Strain
    • 10.2 General Equations of Plane-Strain Transformation
    • *10.3 Mohr's Circle-Plane Strain
    • *10.4 Absolute Maximum Shear Strain
    • 10.5 Strain Rosettes
    • 10.6 Material Property Relationships
    • *10.7 Theories of Failure
  11. Design of Beams and Shafts
    • 11.1 Basis for Beam Design
    • 11.2 Prismatic Beam Design
    • *11.3 Fully Stressed Beams
    • *11.4 Shaft Design
  12. Deflection of Beams and Shafts
    • 12.1 The Elastic Curve
    • 12.2 Slope and Displacement by Integration
    • *12.3 Discontinuity Functions
    • *12.4 Slope and Displacement by the Moment-Area Method
    • 12.5 Method of Superposition
    • 12.6 Statically Indeterminate Beams and Shafts
    • 12.7 Statically Indeterminate Beams and Shafts - Method of Integration
    • *12.8 Statically Indeterminate Beams and Shafts - Moment-Area Method
    • 12.9 Statically Indeterminate Beams and Shafts - Method of Superposition
  13. Buckling of Columns
    • 13.1 Critical Load
    • 13.2 Ideal Column with Pin Supports
    • 13.3 Columns Having Various Types of Supports
    • *13.4 The Secant Formula
    • *13.5 Inelastic Buckling
    • *13.6 Design of Columns for Concentric Loading
    • *13.7 Design of Columns for Eccentric Loading
  14. Energy Methods
    • 14.1 External Work and Strain Energy
    • 14.2 Elastic Strain Energy for Various Types of Loading
    • 14.3 Conservation of Energy
    • 14.4 Impact Loading
    • *14.5 Principle of Virtual Work
    • *14.6 Method of Virtual Forces Applied to Trusses
    • *14.7 Method of Virtual Forces Applied to Beams
    • *14.8 Castigliano's Theorem
    • *14.9 Castigliano's Theorem Applied to Trusses
    • *14.10 Castigliano's Theorem Applied to Beams


  1. Geometric Properties of an Area
  2. Geometric Properties of Structural Shapes
  3. Slopes and Deflections of Beams

Fundamental Problems Partial Solutions and Answers

Selected Answers


Sections of the book that contain more advanced material are indicated by a star (*).

Your questions answered

Pearson+ is your 1-stop shop with eTextbooks, study tools and exam prep features designed to help students get better grades in college. eTextbooks come with built-in tools that simplify studying, like flashcards, audiobook and search. Pearson+ also features Channels, which includes practice problems, study guides, Q&A with experts, video lessons that help you understand tricky topics and more—all in one place. Channels can be purchased separately or added on to your eTextbook at the time of purchase as part of the Study & Exam Prep Pack.

A Pearson eTextbook is an easy-to-use digital version of your book for class that includes upgraded study tools to help you learn how you learn best. Use enhanced search to find what you need within your eTextbook, highlight and make notes to mark important info, generate flashcards to test your knowledge, and use audio to listen to the text. Every feature is designed to help you learn more efficiently and get results. Plus, you can learn on the go with the Pearson+ app. Find this and more in your eTextbook, available in Pearson+.

The Study & Exam Prep Pack includes practice problems, study guides, Q&A with experts, Channels video lessons that help you understand tricky topics and more. It can be added on to your eTextbook or your MyLab and Mastering learning platform at the time of purchase.

Your eTextbook subscription gives you access for 4 months. You can make a one‑time payment for the initial 4‑month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4‑month term ends. You can turn on auto‑renew in My account at any time to continue your subscription before your 4‑month term ends.

When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.

If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.

To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.

Channels is a video platform with thousands of explanations, solutions and practice problems to help you do homework and prep for exams. Videos are personalized to your course, and tutors walk you through solutions. Plus, interactive AI‑powered summaries and a social community help you better understand lessons from class.

Channels is an additional tool to help you with your studies. This means you can use Channels even if your course uses a non‑Pearson textbook.

When you choose a Channels subscription, you're signing up for a 1‑month, 3‑month or 12‑month term and you make an upfront payment for your subscription. By default, these subscriptions auto‑renew at the frequency you select during checkout.

When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.