Thomas' Calculus, 15th edition

  • Joel R. Hass, 
  • Christopher E. Heil, 
  • Maurice D. Weir, 
  • Przemyslaw Bogacki

Your access includes:

  • Search, highlight, and take notes
  • Easily create flashcards
  • Use the app for access anywhere
  • 14-day refund guarantee

$10.99per month

4-month term, pay monthly or pay $43.96

Learn more, spend less

  • Special partners and offers

    Enjoy perks from special partners and offers for students

  • Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized

    Access all your eTextbooks in one place

  • Easily continue access

    Keep learning with auto-renew


Thomas' Calculus goes beyond memorizing formulas and routine procedures to help you develop deeper understanding. It guides you to a level of mathematical proficiency, with additional support if needed through its clear and intuitive explanations, current applications and generalized concepts. Technology exercises in every section use the calculator or computer for solving problems, and Computer Explorations offer exercises requiring a computer algebra system like Maple or Mathematica. The 15th Edition adds exercises, revises figures and language for clarity, and updates many applications; new online chapters cover Complex Functions, Fourier Series and Wavelets.

Published by Pearson (December 29th 2022) - Copyright © 2023

ISBN-13: 9780137616077

Subject: Calculus

Category: Calculus

Table of contents

  1. Functions
    • 1.1 Functions and Their Graphs
    • 1.2 Combining Functions; Shifting and Scaling Graphs
    • 1.3 Trigonometric Functions
    • 1.4 Graphing with Software
  2. Limits and Continuity
    • 2.1 Rates of Change and Tangent Lines to Curves
    • 2.2 Limit of a Function and Limit Laws
    • 2.3 The Precise Definition of a Limit
    • 2.4 One-Sided Limits
    • 2.5 Continuity
    • 2.6 Limits Involving Infinity; Asymptotes of Graphs
  3. Derivatives
    • 3.1 Tangent Lines and the Derivative at a Point
    • 3.2 The Derivative as a Function
    • 3.3 Differentiation Rules
    • 3.4 The Derivative as a Rate of Change
    • 3.5 Derivatives of Trigonometric Functions
    • 3.6 The Chain Rule
    • 3.7 Implicit Differentiation
    • 3.8 Derivatives of Inverse Functions and Logarithms
    • 3.9 Related Rates
    • 3.10 Linearization and Differentials
  4. Applications of Derivatives
    • 4.1 Extreme Values of Functions on Closed Intervals
    • 4.2 The Mean Value Theorem
    • 4.3 Monotonic Functions and the First Derivative Test
    • 4.4 Concavity and Curve Sketching
    • 4.5 Applied Optimization
    • 4.6 Newton's Method
    • 4.7 Antiderivatives
  5. Integrals
    • 5.1 Area and Estimating with Finite Sums
    • 5.2 Sigma Notation and Limits of Finite Sums
    • 5.3 The Definite Integral
    • 5.4 The Fundamental Theorem of Calculus
    • 5.5 Indefinite Integrals and the Substitution Method
    • 5.6 Definite Integral Substitutions and the Area Between Curves
  6. Applications of Definite Integrals
    • 6.1 Volumes Using Cross-Sections
    • 6.2 Volumes Using Cylindrical Shells
    • 6.3 Arc Length
    • 6.4 Areas of Surfaces of Revolution
    • 6.5 Work and Fluid Forces
    • 6.6 Moments and Centers of Mass
  7. Transcendental Functions
    • 7.1 Inverse Functions and Their Derivatives
    • 7.2 Natural Logarithms
    • 7.3 Exponential Functions
    • 7.4 Exponential Change and Separable Differential Equations
    • 7.5 Indeterminate Forms and L'Hôpital's Rule
    • 7.6 Inverse Trigonometric Functions
    • 7.7 Hyperbolic Functions
    • 7.8 Relative Rates of Growth
  8. Techniques of Integration
    • 8.1 Using Basic Integration Formulas
    • 8.2 Integration by Parts
    • 8.3 Trigonometric Integrals
    • 8.4 Trigonometric Substitutions
    • 8.5 Integration of Rational Functions by Partial Fractions
    • 8.6 Integral Tables and Computer Algebra Systems
    • 8.7 Numerical Integration
    • 8.8 Improper Integrals
    • 8.9 Probability
  9. First-Order Differential Equations
    • 9.1 Solutions, Slope Fields, and Euler's Method
    • 9.2 First-Order Linear Equations
    • 9.3 Applications
    • 9.4 Graphical Solutions of Autonomous Equations
    • 9.5 Systems of Equations and Phase Planes
  10. Infinite Sequences and Series
    • 10.1 Sequences
    • 10.2 Infinite Series
    • 10.3 The Integral Test
    • 10.4 Comparison Tests
    • 10.5 Absolute Convergence; The Ratio and Root Tests
    • 10.6 Alternating Series and Conditional Convergence
    • 10.7 Power Series
    • 10.8 Taylor and Maclaurin Series
    • 10.9 Convergence of Taylor Series
    • 10.10 Applications of Taylor Series
  11. Parametric Equations and Polar Coordinates
    • 11.1 Parametrizations of Plane Curves
    • 11.2 Calculus with Parametric Curves
    • 11.3 Polar Coordinates
    • 11.4 Graphing Polar Coordinate Equations
    • 11.5 Areas and Lengths in Polar Coordinates
    • 11.6 Conic Sections
    • 11.7 Conics in Polar Coordinates

Appendix A

  • A.1 Real Numbers and the Real Line
  • A.2 Mathematical Induction
  • A.3 Lines, Circles, and Parabolas
  • A.4 Proofs of Limit Theorems
  • A.5 Commonly Occurring Limits
  • A.6 Theory of the Real Numbers
  • A.7 The Distributive Law for Vector Cross Products
  • A.8 The Mixed Derivative Theorem and the Increment Theorem

Appendix B (online)

  • B.1 Determinants
  • B.2 Extreme Values and Saddle Points for Functions of More than Two Variables
  • B.3 The Method of Gradient Descent

Answers to Odd-Numbered Exercises

Applications Index

Subject Index

A Brief Table of Integrals


Your questions answered

Pearson+ is your one-stop shop, with eTextbooks and study videos designed to help students get better grades in college.

A Pearson eTextbook is an easy‑to‑use digital version of the book. You'll get upgraded study tools, including enhanced search, highlights and notes, flashcards and audio. Plus learn on the go with the Pearson+ app.

Your eTextbook subscription gives you access for 4 months. You can make a one‑time payment for the initial 4‑month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4‑month term ends. You can turn on auto‑renew in My account at any time to continue your subscription before your 4‑month term ends.

When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.

If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.

To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.

Channels is a video platform with thousands of explanations, solutions and practice problems to help you do homework and prep for exams. Videos are personalized to your course, and tutors walk you through solutions. Plus, interactive AI‑powered summaries and a social community help you better understand lessons from class.

Channels is an additional tool to help you with your studies. This means you can use Channels even if your course uses a non‑Pearson textbook.

When you choose a Channels subscription, you're signing up for a 1‑month, 3‑month or 12‑month term and you make an upfront payment for your subscription. By default, these subscriptions auto‑renew at the frequency you select during checkout.

When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.