Discrete and Combinatorial Mathematics (Classic Version), 5th edition

  • Ralph P. Grimaldi, 
  • Dean W. Wichern

Your access includes:

  • Search, highlight, notes, and more
  • Easily create flashcards
  • Use the app for access anywhere
  • 14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Learn more, spend less

  • Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized

    Access all your eTextbooks in one place

  • Easily continue access

    Keep learning with auto-renew

Overview

Discrete and Combinatorial Mathematics continues to improve on the features that have made it the leader in its field. It offers a flexible organization that enables instructors to adapt the book to their courses. It is both complete and careful, and continues to maintain its emphasis on algorithms and applications. Excellent exercise sets allow you to perfect skills as you practice. The 5th Edition continues to feature numerous computer science applications, making this the ideal text to prepare you for advanced study.

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price.

Published by Pearson (May 23rd 2023) - Copyright © 2023

ISBN-13: 9780137981304

Subject: Advanced Math

Category: Discrete Math

Overview

PART 1. FUNDAMENTALS OF DISCRETE MATHEMATICS.

1. Fundamental Principles of Counting.

The Rules of Sum and Product.

Permutations.

Combinations: The Binomial Theorem.

Combinations with Repetition.

The Catalan Numbers (Optional).

Summary and Historical Review.
2. Fundamentals of Logic.

Basic Connectives and Truth Tables.

Logical Equivalence: The Laws of Logic.

Logical Implication: Rules of Inference.

The Use of Quantifiers.

Quantifiers, Definitions, and the Proofs of Theorems.

Summary and Historical Review.
3. Set Theory.

Sets and Subsets.

Set Operations and the Laws of Set Theory.

Counting and Venn Diagrams.

A First Word on Probability.

The Axioms of Probability (Optional).

Conditional Probability: Independence (Optional).

Discrete Random Variables (Optional).

Summary and Historical Review.
4. Properties of the Integers: Mathematical Induction.

The Well-Ordering Principle: Mathematical Induction.

Recursive Definitions.

The Division Algorithm: Prime Numbers.

The Greatest Common Divisor: The Euclidean Algorithm.

The Fundamental Theorem of Arithmetic.

Summary and Historical Review.
5. Relations and Functions.

Cartesian Products and Relations.

Functions: Plain and One-to-One.

Onto Functions: Stirling Numbers of the Second Kind.

Special Functions.

The Pigeonhole Principle.

Function Composition and Inverse Functions.

Computational Complexity.

Analysis of Algorithms.

Summary and Historical Review.
6. Languages: Finite State Machines.

Language: The Set Theory of Strings.

Finite State Machines: A First Encounter.

Finite State Machines: A Second Encounter.

Summary and Historical Review.
7. Relations: The Second Time Around.

Relations Revisited: Properties of Relations.

Computer Recognition: Zero-One Matrices and Directed Graphs.

Partial Orders: Hasse Diagrams.

Equivalence Relations and Partitions.

Finite State Machines: The Minimization Process.

Summary and Historical Review.

PART 2. FURTHER TOPICS IN ENUMERATION.

8. The Principle of Inclusion and Exclusion.

The Principle of Inclusion and Exclusion.

Generalizations of the Principle.

Derangements: Nothing Is in Its Right Place.

Rook Polynomials.

Arrangements with Forbidden Positions.

Summary and Historical Review.
9. Generating Functions.

Introductory Examples.

Definition and Examples: Calculational Techniques.

Partitions of Integers.

The Exponential Generating Functions.

The Summation Operator.

Summary and Historical Review.
10. Recurrence Relations.

The First-Order Linear Recurrence Relation.

The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients.

The Nonhomogeneous Recurrence Relation.

The Method of Generating Functions.

A Special Kind of Nonlinear Recurrence Relation (Optional).

Divide and Conquer Algorithms.

Summary and Historical Review.

PART 3. GRAPH THEORY AND APPLICATIONS.

11. An Introduction to Graph Theory.

Definitions and Examples.

Subgraphs, Complements, and Graph Isomorphism.

Vertex Degree: Euler Trails and Circuits.

Planar Graphs.

Hamilton Paths and Cycles.

Graph Coloring and Chromatic Polynomials.

Summary and Historical Review.
12. Trees.

Definitions, Properties, and Examples.

Rooted Trees.

Trees and Sorting.

Weighted Trees and Prefix Codes.

Biconnected Components and Articulation Points.

Summary and Historical Review.
13. Optimization and Matching.

Dijkstra's Shortest Path Algorithm.

Minimal Spanning Trees: The Algorithms of Kruskal and Prim.

Transport Networks: The Max-Flow Min-Cut Theorem.

Matching Theory.

Summary and Historical Review.

PART 4. MODERN APPLIED ALGEBRA.

14. Rings and Modular Arithmetic.

The Ring Structure: Definition and Examples.

Ring Properties and Substructures.

The Integers Modulo n. Cryptology.

Ring Homomorphisms and Isomorphisms: The Chinese Remainder Theorem.

Summary and Historical Review.
15. Boolean Algebra and Switching Functions.

Switching Functions: Disjunctive and Conjunctive Normal Forms.

Gating Networks: Minimal Sums of Products: Karnaugh Maps.

Further Applications: Don't-Care Conditions.

The Structure of a Boolean Algebra (Optional).

Summary and Historical Review.
16. Groups, Coding Theory, and Polya's Theory of Enumeration.

Definition, Examples, and Elementary Properties.

Homomorphisms, Isomorphisms, and Cyclic Groups.

Cosets and Lagrange's Theorem.

The RSA Cipher (Optional).

Elements of Coding Theory.

The Hamming Metric.

The Parity-Check and Generator Matrices.

Group Codes: Decoding with Coset Leaders.

Hamming Matrices.

Counting and Equivalence: Burnside's Theorem.

The Cycle Index.

The Pattern Inventory: Polya's Method of Enumeration.

Summary and Historical Review.
17. Finite Fields and Combinatorial Designs.

Polynomial Rings.

Irreducible Polynomials: Finite Fields.

Latin Squares.

Finite Geometries and Affine Planes.

Block Designs and Projective Planes.

Summary and Historical Review.
Appendices.

Exponential and Logarithmic Functions.

Matrices, Matrix Operations, and Determinants.

Countable and Uncountable Sets.
Solutions.

Index.

Your questions answered

Pearson+ is your 1-stop shop with eTextbooks, study tools and exam prep features designed to help students get better grades in college. eTextbooks come with built-in tools that simplify studying, like flashcards, audiobook and search. Pearson+ also features Channels, which includes practice problems, study guides, Q&A with experts, video lessons that help you understand tricky topics and more—all in one place. Channels can be purchased separately or added on to your eTextbook at the time of purchase as part of the Study & Exam Prep Pack.

A Pearson eTextbook is an easy-to-use digital version of your book for class that includes upgraded study tools to help you learn how you learn best. Use enhanced search to find what you need within your eTextbook, highlight and make notes to mark important info, generate flashcards to test your knowledge, and use audio to listen to the text. Every feature is designed to help you learn more efficiently and get results. Plus, you can learn on the go with the Pearson+ app. Find this and more in your eTextbook, available in Pearson+.

The Study & Exam Prep Pack includes practice problems, study guides, Q&A with experts, Channels video lessons that help you understand tricky topics and more. It can be added on to your eTextbook or your MyLab and Mastering learning platform at the time of purchase.

Your eTextbook subscription gives you access for 4 months. You can make a one‑time payment for the initial 4‑month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4‑month term ends. You can turn on auto‑renew in My account at any time to continue your subscription before your 4‑month term ends.

When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.

If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.

To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.

Channels is a video platform with thousands of explanations, solutions and practice problems to help you do homework and prep for exams. Videos are personalized to your course, and tutors walk you through solutions. Plus, interactive AI‑powered summaries and a social community help you better understand lessons from class.

Channels is an additional tool to help you with your studies. This means you can use Channels even if your course uses a non‑Pearson textbook.

When you choose a Channels subscription, you're signing up for a 1‑month, 3‑month or 12‑month term and you make an upfront payment for your subscription. By default, these subscriptions auto‑renew at the frequency you select during checkout.

When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.