Introduction to Analysis, An, 4th edition

  • William R. Wade

Your access includes:

  • Search, highlight, and take notes
  • Easily create flashcards
  • Use the app for access anywhere
  • 14-day refund guarantee

$10.99per month

4-month term, pay monthly or pay $43.96

Learn more, spend less

  • Special partners and offers

    Enjoy perks from special partners and offers for students

  • Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized

    Access all your eTextbooks in one place

  • Easily continue access

    Keep learning with auto-renew

Overview

Hallmark features of this title

  • Flexible presentation: Uniform writing style and notation covers material in small sections, allowing instructors to adapt it to their syllabus.
  • Early introduction of fundamental goals of analysis: Examines how a limit operation interacts with algebraic operation.
  • More than 200 worked examples and 600 exercises help students test comprehension while using techniques in other contexts.
  • Optional appendices and enrichment sections help students understand the material and allow instructors to tailor their courses.
  • An alternate chapter on metric spaces allows instructors to cover either chapter independently.
  • Separate coverage of topology and analysis presents purely computational material first, followed by topological material in alternate chapters.

Published by Pearson (July 1st 2022) - Copyright © 2023

ISBN-13: 9780137981663

Subject: Advanced Math

Category: Real Analysis

Table of contents

Preface

Part I. ONE-DIMENSIONAL THEORY

 

1. The Real Number System

1.1 Introduction

1.2 Ordered field axioms

1.3 Completeness Axiom

1.4 Mathematical Induction

1.5 Inverse functions and images

1.6 Countable and uncountable sets

 

2. Sequences in R

2.1 Limits of sequences

2.2 Limit theorems

2.3 Bolzano-Weierstrass Theorem

2.4 Cauchy sequences

*2.5 Limits supremum and infimum

 

3. Continuity on R

3.1 Two-sided limits

3.2 One-sided limits and limits at infinity

3.3 Continuity

3.4 Uniform continuity

 

4. Differentiability on R

4.1 The derivative

4.2 Differentiability theorems

4.3 The Mean Value Theorem

4.4 Taylor's Theorem and l'Hôpital's Rule

4.5 Inverse function theorems

 

5 Integrability on R

5.1 The Riemann integral

5.2 Riemann sums

5.3 The Fundamental Theorem of Calculus

5.4 Improper Riemann integration

*5.5 Functions of bounded variation

*5.6 Convex functions

 

6. Infinite Series of Real Numbers

6.1 Introduction

6.2 Series with nonnegative terms

6.3 Absolute convergence

6.4 Alternating series

*6.5 Estimation of series

*6.6 Additional tests

 

7. Infinite Series of Functions

7.1 Uniform convergence of sequences

7.2 Uniform convergence of series

7.3 Power series

7.4 Analytic functions

*7.5 Applications

 

Part II. MULTIDIMENSIONAL THEORY

 

8. Euclidean Spaces

8.1 Algebraic structure

8.2 Planes and linear transformations

8.3 Topology of Rn

8.4 Interior, closure, boundary

 

9. Convergence in Rn

9.1 Limits of sequences

9.2 Heine-Borel Theorem

9.3 Limits of functions

9.4 Continuous functions

*9.5 Compact sets

*9.6 Applications

 

10. Metric Spaces

10.1 Introduction

10.2 Limits of functions

10.3 Interior, closure, boundary

10.4 Compact sets

10.5 Connected sets

10.6 Continuous functions

10.7 Stone-Weierstrass Theorem

 

11. Differentiability on Rn

11.1 Partial derivatives and partial integrals

11.2 The definition of differentiability

11.3 Derivatives, differentials, and tangent planes

11.4 The Chain Rule

11.5 The Mean Value Theorem and Taylor's Formula

11.6 The Inverse Function Theorem

*11.7 Optimization

 

12. Integration on Rn

12.1 Jordan regions

12.2 Riemann integration on Jordan regions

12.3 Iterated integrals

12.4 Change of variables

*12.5 Partitions of unity

*12.6 The gamma function and volume

 

13. Fundamental Theorems of Vector Calculus

13.1 Curves

13.2 Oriented curves

13.3 Surfaces

13.4 Oriented surfaces

13.5 Theorems of Green and Gauss

13.6 Stokes's Theorem

 

*14. Fourier Series

*14.1 Introduction

*14.2 Summability of Fourier series

*14.3 Growth of Fourier coefficients

*14.4 Convergence of Fourier series

*14.5 Uniqueness

 

Appendices

A. Algebraic laws

B. Trigonometry

C. Matrices and determinants

D. Quadric surfaces

E. Vector calculus and physics

F. Equivalence relations

 

References

Answers and Hints to Exercises

Subject Index

Symbol Index

 

*Enrichment section

Your questions answered

Pearson+ is your one-stop shop, with eTextbooks and study videos designed to help students get better grades in college.

A Pearson eTextbook is an easy‑to‑use digital version of the book. You'll get upgraded study tools, including enhanced search, highlights and notes, flashcards and audio. Plus learn on the go with the Pearson+ app.

Your eTextbook subscription gives you access for 4 months. You can make a one‑time payment for the initial 4‑month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4‑month term ends. You can turn on auto‑renew in My account at any time to continue your subscription before your 4‑month term ends.

When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.

If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.

To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.

Channels is a video platform with thousands of explanations, solutions and practice problems to help you do homework and prep for exams. Videos are personalized to your course, and tutors walk you through solutions. Plus, interactive AI‑powered summaries and a social community help you better understand lessons from class.

Channels is an additional tool to help you with your studies. This means you can use Channels even if your course uses a non‑Pearson textbook.

When you choose a Channels subscription, you're signing up for a 1‑month, 3‑month or 12‑month term and you make an upfront payment for your subscription. By default, these subscriptions auto‑renew at the frequency you select during checkout.

When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.