Business Calculus
Apply the transformations on the graph of p(x)=xp(x)=\sqrt{x}p(x)=x into the graph of h(x)=4x−3−6h(x)=4\sqrt{x-3}-6h(x)=4x−3−6 . Check your work with the help of a graphing calculator.
Write the new equation after shifting the given graph as stated below. Also, plot both graphs using the same rectangular coordinate system.
y=13(x−5)+2y=\frac13(x-5)+2y=31(x−5)+2 Down 222 units, right 333 units
Determine (uov)(x)(uov)(x)(uov)(x) and (vou)(x)(v o u) (x)(vou)(x) for the following u(x)u(x)u(x) and v(x)v(x)v(x).
u(x)=x7u(x)=x^7u(x)=x7
v(x)=x4−6v(x)=x^4-6v(x)=x4−6
Consider the functions f1(x)=12x3f_1\left(x\right)=\frac12x^3 and f2(x)=∣12x3∣f_2\left(x\right)=\left|\frac12x^3\right|. Graph them together and describe how applying the absolute value function in f2f_2 modifies the graph of f1f_1.
Using the defined functions p(x)=x2−1p(x) = x^2 - 1 and q(x)={2x+1 if −2≤x<0x2−2x if 0≤x≤3q\left(x\right)=\begin{cases}2x+1\text{ if }-2\le x<0\\ x^2-2x\text{ if }0\le x\le3\end{cases}, evaluate q(p(1))q\left(p\left(1\right)\right).
Solve the equation 9x−5=1029^{x-5}=1029x−5=102 for xxx.
For the given expression, simplify.
ex2ln(5x2+7)e^{x^2\ln(5x^2+7)}
Determine the inverse of the function and its domain: g(x)=(x−2)3g\left(x\right)=\left(x-2\right)^3g(x)=(x−2)3