Business Calculus
Evaluate sinh(0)\sinh\left(0\right)sinh(0) given that the definition of the hyperbolic sine function is, sinh(x)=ex−e−x2\sinh\left(x\right)=\frac{e^{x}-e^{-x}}{2}sinh(x)=2ex−e−x, and sketch a plausible graph for y=sinh(x)y=\sinh(x)y=sinh(x).
Given that a function hh satisfies 0≤j(x)≤1−cosx0\le j\left(x\right)\le1-\cos x for all xx near 00, determine limx→0j(x)\lim_{x\to0}j\left(x\right).
Evaluate the limit:
limh→0tan(tan(h))tan(h){{\displaystyle\lim_{h\to0}\frac{\tan\left(\tan\left(h\right)\right)}{\tan\left(h\right)}}}
Find the limit of the polynomial function f(x)=x3−2x2+3x−4f\left(x\right)=x^3-2x^2+3x-4f(x)=x3−2x2+3x−4 as xxx approaches 000.
Determine all vertical asymptotes x=ax=a of the function f(x)=2x+3x4−8x3+16x2f\left(x\right)=\frac{2x+3}{x^4-8x^3+16x^2}. Evaluate limx→a+f(x){\displaystyle\lim_{x\to a^{+}}}f\left(x\right), limx→a−f(x){\displaystyle\lim_{x\to a_{}^{-}}}f\left(x\right), and limx→a f(x){\displaystyle\lim_{x\to a}}\text{ }f\left(x\right) for each value of aa.
Determine the limit:
limx→∞(x2+36−x2−4){\displaystyle\lim_{x\to\infty}}\left(\sqrt{x^2+36}-\sqrt{x^2-4}\right)
Identify the interval of continuity for the function h(x)=4x2−8x+93x2+3x+3h(x)=\frac{4x^2-8x+9}{3x^2+3x+3}.
Find the limit as x→π2x\to\frac{\pi}{2}x→2π of the expression cos(π4sin(cosx))\cos\left(\frac{\pi}{4}\sin\left(\cos x\right)\right). Determine if the function is continuous at the point being approached.
Find the value of aa that ensures the function h(x)={sin4(2x)x4,x≠0a,x=0h\left(x\right)=\begin{cases}\frac{\sin^4\left(2x\right)}{x^4},x\ne0\\ a,x=0\end{cases} is continuous at x=0x=0.