Introduction to Materials Science for Engineers, 9th edition

  • James F. Shackelford

Your access includes:

  • Search, highlight, notes, and more
  • Easily create flashcards
  • Use the app for access anywhere
  • 14-day refund guarantee

$10.99per month

Minimum 4-month term, pay monthly or pay $43.96 upfront

Learn more, spend less

  • Study simpler and faster

    Use flashcards and other study tools in your eTextbook

  • Watch and learn

    Videos & animations bring concepts to life

  • Listen on the go

    Learn how you like with full eTextbook audio

  • Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized

    Access all your eTextbooks in one place

Overview

Introduction to Materials Science for Engineers offers a balanced, current treatment of the full spectrum of engineering materials. The text covers all the physical properties, applications and relevant properties associated with engineering materials. Author James Shackelford explores all major categories of materials while also offering detailed examinations of a wide range of new materials with high-tech applications.

The 9th Edition has been revised to reflect recent data, trends and information. State-of-the-art computer-generated crystal structure illustrations provide the most technically precise and visually realistic illustrations available. Where appropriate, images are now presented in full color to provide a more vibrant presentation of visual information. New end-of-chapter conceptual problems throughout the text help you further your understanding of the topics presented.

Published by Pearson (January 22nd 2021) - Copyright © 2021

ISBN-13: 9780136912453

Subject: Mechanical Engineering

Category: Materials Science

Overview

  1. Materials for Engineering
    • 1.1 The Material World
    • 1.2 Materials Science and Engineering
    • 1.3 Six Materials That Changed Your World
      • STEEL BRIDGES—INTRODUCING METALS
      • TRANSPARENT OXIDES—INTRODUCING CERAMICS
      • SMARTPHONES AND TABLETS—INTRODUCING GLASSES
      • NYLON PARACHUTES—INTRODUCING POLYMERS
      • KEVLAR®-REINFORCED TIRES—INTRODUCING COMPOSITES
      • SILICON CHIPS—INTRODUCING SEMICONDUCTORS
    • 1.4 Processing and Selecting Materials
    • 1.5 Looking at Materials by Powers of Ten

PART I: The Fundamentals

  1. Atomic Bonding
    • 2.1 Atomic Structure
    • 2.2 The Ionic Bond
      • COORDINATION NUMBER
    • 2.3 The Covalent Bond
    • 2.4 The Metallic Bond
    • 2.5 The Secondary, or van der Waals, Bond
    • 2.6 Materials—The Bonding Classification
  2. Crystalline Structure—Perfection
    • 3.1 Seven Systems and Fourteen Lattices
    • 3.2 Metal Structures
    • 3.3 Ceramic Structures
  3. Crystal Defects and Noncrystalline Structure—Imperfection
    • 4.1 The Solid Solution—Chemical Imperfection
    • 4.2 Point Defects—Zero-Dimensional Imperfections
    • 4.3 Linear Defects, or Dislocations—One-Dimensional Imperfections
    • 4.4 Planar Defects—Two-Dimensional Imperfections
    • 4.5 Noncrystalline Solids—Three-Dimensional Imperfections
  4. Diffusion
    • 5.1 Thermally Activated Processes
    • 5.2 Thermal Production of Point Defects
    • 5.3 Point Defects and Solid-State Diffusion
    • 5.4 Steady-State Diffusion
    • 5.5 Alternate Diffusion Paths
  5. Mechanical Behavior
    • 6.1 Stress Versus Strain
      • METALS
      • CERAMICS AND GLASSES
      • POLYMERS
    • 6.2 Elastic Deformation
    • 6.3 Plastic Deformation
    • 6.4 Hardness
    • 6.5 Creep and Stress Relaxation
    • 6.6 Viscoelastic Deformation
      • INORGANIC GLASSES
      • ORGANIC POLYMERS
      • ELASTOMERS
  6. Thermal Behavior
    • 7.1 Heat Capacity
    • 7.2 Thermal Expansion
    • 7.3 Thermal Conductivity
    • 7.4 Thermal Shock
  7. Failure Analysis and Prevention
    • 8.1 Impact Energy
    • 8.2 Fracture Toughness
    • 8.3 Fatigue
    • 8.4 Nondestructive Testing
    • 8.5 Failure Analysis and Prevention
  8. Phase Diagrams—Equilibrium Microstructural Development
    • 9.1 The Phase Rule
    • 9.2 The Phase Diagram
      • COMPLETE SOLID SOLUTION
      • EUTECTIC DIAGRAM WITH NO SOLID SOLUTION
      • EUTECTIC DIAGRAM WITH LIMITED SOLID SOLUTION
      • EUTECTOID DIAGRAM
      • PERITECTIC DIAGRAM
      • GENERAL BINARY DIAGRAMS
    • 9.3 The Lever Rule
    • 9.4 Microstructural Development During Slow Cooling
  9. Kinetics—Heat Treatment
    • 10.1 Time—The Third Dimension
    • 10.2 The TTT Diagram
      • DIFFUSIONAL TRANSFORMATIONS
      • DIFFUSIONLESS (MARTENSITIC) TRANSFORMATIONS
      • HEAT TREATMENT OF STEEL
    • 10.3 Hardenability
    • 10.4 Precipitation Hardening
    • 10.5 Annealing
      • COLD WORK
      • RECOVERY
      • RECRYSTALLIZATION
      • GRAIN GROWTH
    • 10.6 The Kinetics of Phase Transformations for Nonmetals

PART II: Materials and Their Applications

  1. Structural Materials—Metals, Ceramics, and Glasses
    • 11.1 Metals
      • FERROUS ALLOYS
      • NONFERROUS ALLOYS
    • 11.2 Ceramics and Glasses
      • CERAMICS—CRYSTALLINE MATERIALS
      • GLASSES—NONCRYSTALLINE MATERIALS
      • GLASS-CERAMICS
    • 11.3 Processing the Structural Materials
      • PROCESSING OF METALS
      • PROCESSING OF CERAMICS AND GLASSES
  2. Structural Materials—Polymers and Composites
    • 12.1 Polymers
      • POLYMERIZATION
      • STRUCTURAL FEATURES OF POLYMERS
      • THERMOPLASTIC POLYMERS
      • THERMOSETTING POLYMERS
      • ADDITIVES
    • 12.2 Composites
      • FIBER-REINFORCED COMPOSITES
      • AGGREGATE COMPOSITES
      • PROPERTY AVERAGING
      • MECHANICAL PROPERTIES OF COMPOSITES
    • 12.3 Processing the Structural Materials
      • PROCESSING OF POLYMERS
      • PROCESSING OF COMPOSITES
  3. Electronic Materials
    • 13.1 Charge Carriers and Conduction
    • 13.2 Energy Levels and Energy Bands
    • 13.3 Conductors
      • THERMOCOUPLES
      • SUPERCONDUCTORS
    • 13.4 Insulators
      • FERROELECTRICS
      • PIEZOELECTRICS
    • 13.5 Semiconductors
      • INTRINSIC, ELEMENTAL SEMICONDUCTORS
      • EXTRINSIC, ELEMENTAL SEMICONDUCTORS
      • COMPOUND SEMICONDUCTORS
      • PROCESSING OF SEMICONDUCTORS
      • SEMICONDUCTOR DEVICES
    • 13.6 Composites
    • 13.7 Electrical Classification of Materials
  4. Optical and Magnetic Materials
    • 14.1 Optical Materials
      • OPTICAL PROPERTIES
      • OPTICAL SYSTEMS AND DEVICES
    • 14.2 Magnetic Materials
      • FERROMAGNETISM
      • FERRIMAGNETISM
      • METALLIC MAGNETS
      • CERAMIC MAGNETS
  5. Materials in Engineering Design
    • 15.1 Material Properties—Engineering Design Parameters
    • 15.2 Selection of Structural Materials—Case Studies
      • MATERIALS FOR HIP- AND KNEE-JOINT REPLACEMENT
      • METAL SUBSTITUTION WITH COMPOSITES
    • 15.3 Selection of Electronic, Optical, and Magnetic Materials—Case Studies
      • LIGHT-EMITTING DIODE
      • GLASS FOR SMART PHONE AND TABLET TOUCH SCREENS
      • AMORPHOUS METAL FOR ELECTRIC-POWER DISTRIBUTION
    • 15.4 Materials and Our Environment
      • ENVIRONMENTAL DEGRADATION OF MATERIALS
      • ENVIRONMENTAL ASPECTS OF DESIGN
      • RECYCLING AND REUSE

APPENDICES

  1. Physical and Chemical Data for the Elements
  2. Atomic and Ionic Radii of the Elements
  3. Constants and Conversion Factors and the Periodic Table of Elements
  4. Properties of the Structural Materials
  5. Properties of the Electronic, Optical, and Magnetic Materials
  6. Glossary

Answers to Practice Problems (PP) and Odd-Numbered Problems

Index

Your questions answered

Pearson+ is your one-stop shop, with eTextbooks and study videos designed to help students get better grades in college.

A Pearson eTextbook is an easy‑to‑use digital version of the book. You'll get upgraded study tools, including enhanced search, highlights and notes, flashcards and audio. Plus learn on the go with the Pearson+ app.

Your eTextbook subscription gives you access for 4 months. You can make a one‑time payment for the initial 4‑month term or pay monthly. If you opt for monthly payments, we will charge your payment method each month until your 4‑month term ends. You can turn on auto‑renew in My account at any time to continue your subscription before your 4‑month term ends.

When you purchase an eTextbook subscription, it will last 4 months. You can renew your subscription by selecting Extend subscription on the Manage subscription page in My account before your initial term ends.

If you extend your subscription, we'll automatically charge you every month. If you made a one‑time payment for your initial 4‑month term, you'll now pay monthly. To make sure your learning is uninterrupted, please check your card details.

To avoid the next payment charge, select Cancel subscription on the Manage subscription page in My account before the renewal date. You can subscribe again in the future by purchasing another eTextbook subscription.

Channels is a video platform with thousands of explanations, solutions and practice problems to help you do homework and prep for exams. Videos are personalized to your course, and tutors walk you through solutions. Plus, interactive AI‑powered summaries and a social community help you better understand lessons from class.

Channels is an additional tool to help you with your studies. This means you can use Channels even if your course uses a non‑Pearson textbook.

When you choose a Channels subscription, you're signing up for a 1‑month, 3‑month or 12‑month term and you make an upfront payment for your subscription. By default, these subscriptions auto‑renew at the frequency you select during checkout.

When you purchase a Channels subscription it will last 1 month, 3 months or 12 months, depending on the plan you chose. Your subscription will automatically renew at the end of your term unless you cancel it.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details.