Elementary Differential Equations with Boundary Value Problems

Elementary Differential Equations with Boundary Value Problems, 2nd edition

  • Werner E. Kohler, 
  • Lee W. Johnson

Choose the option that's right for you

Single

$9.99 / mo

4-month minimum term for $39.96

  • Access this eText title
  • Up to 2 devices

Multi

$14.99 / mo

4-month minimum term for $59.96

  • Access over 1,500 titles
  • Up to 2 devices
  • Discounted tutor access

Learn more, spend less

  • Icon

    Learn anytime, anywhere

    Get the app to access your eText whenever you need it

  • Icon

    Make it your own

    Your notes. Your highlights. Your eText

  • Icon

    Find it fast

    Quickly navigate your eText with search

  • Icon

    Stay organized

    Access all your eTexts in one place

  • Icon

    Easily continue access

    Keep learning with auto-renew

Overview

Elementary Differential Equations with Boundary Value Problems presents the underlying theory, solution procedures, and numerical/computational aspects of differential equations in a seamless way. Using this useful framework, you'll be able to understand and solve differential equations.

Published by Pearson (July 14th 2021) - Copyright © 2006

ISBN-13: 9780137546398

Subject: Advanced Math

Category: Differential Equations

Table of contents

1: INTRODUCTION TO DIFFERENTIAL EQUATIONS
1.1 Examples of Differential Equations
1.2 Direction Fields

2: FIRST ORDER DIFFERENTIAL EQUATIONS
2.1 Introduction
2.2 First Order Linear Differential Equations
2.3 Introduction to Mathematical Models
2.4 Population Dynamics and Radioactive Decay
2.5 First Order Nonlinear Differential Equations
2.6 Separable First Order Equations
2.7 Exact Differential Equations
2.8 The Logistic Population Model
2.9 Applications to Mechanics
2.10 Euler's Method
2.11 Review Exercises

3: SECOND AND HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS
3.1 Introduction
3.2 The General Solution of Homogeneous Equations
3.3 Constant Coefficient Homogeneous Equations
3.4 Real Repeated Roots; Reduction of Order
3.5 Complex Roots
3.6 Unforced Mechanical Vibrations
3.7 The General Solution of a Linear Nonhomogeneous Equation
3.8 The Method of Undetermined Coefficients
3.9 The Method of Variation of Parameters
3.10 Forced Mechanical Vibrations, Electrical Networks, and Resonance
3.11 Higher Order Linear Homogeneous Differential Equations
3.12 Higher Order Homogeneous Constant Coefficient Differential Equations
3.13 Higher Order Linear Nonhomogeneous Differential Equations
3.14 Review Exercises

4: FIRST ORDER LINEAR SYSTEMS
4.1 Introduction
4.2 Existence and Uniqueness
4.3 Homogeneous Linear Systems
4.4 Constant Coefficient Homogeneous Systems and the Eigenvalue Problem
4.5 Real Eigenvalues and the Phase Plane
4.6 Complex Eigenvalues
4.7 Repeated Eigenvalues
4.8 Nonhomogeneous Linear Systems
4.9 Numerical Methods for Systems of Differential Equations
4.10 The Exponential Matrix and Diagonalization
4.11 Review Exercises

5: LAPLACE TRANSFORMS
5.1 Introduction
5.2 Laplace Transform Pairs
5.3 The Method of Partial Fractions
5.4 Laplace Transforms of Periodic Functions and System Transfer Functions
5.5 Solving Systems of Differential Equations
5.6 Convolution
5.7 The Delta Function and Impulse Response

6: NONLINEAR SYSTEMS
6.1 Introduction
6.2 Equilibrium Solutions and Direction Fields
6.3 Conservative Systems
6.4 Stability
6.5 Linearization and the Local Picture
6.6 Two-Dimensional Linear Systems
6.7 Predator-Prey Population Models

7: NUMERICAL METHODS
7.1 Euler's Method, Heun's Method, the Modified Euler's Method
7.2 Taylor Series Methods
7.3 Runge-Kutta Methods

8: SERIES SOLUTION OF DIFFERENTIAL EQUATIONS
8.1 Introduction
8.2 Series Solutions near an Ordinary Point
8.3 The Euler Equation
8.4 Solutions Near a Regular Singular Point and the Method of Frobenius
8.5 The Method of Frobenius Continued; Special Cases and a Summary

9: SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS AND FOURIER SERIES
9.1 Heat Flow in a Thin Bar. Separation of Variables
9.2 Series Solutions
9.3 Calculating the Solution
9.4 Fourier Series
9.5 The Wave Equation
9.6 Laplace's Equation
9.7 Higher-Dimensional Problems; Nonhomogeneous Equations

10: FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS AND THE METHOD OF CHARACTERISTICS
10.1 The Cauchy Problem
10.2 Existence and Uniqueness
10.3 The Method of Characteristics

11: LINEAR TWO-POINT BOUNDARY VALUE PROBLEMS
11.1 Existence and Uniqueness
11.2 Two-Point Boundary Value Problems for Linear Systems
11.3 Sturm-Liouville Boundary Value Problems

Your questions answered

Introducing Pearson+. Reimagined learning, designed for you. Choose from one eText or over 1,500 eTexts and study tools, all in one place, for one low monthly subscription. A new way to buy books that fits your budget. Make the most of your study time with offline access, enhanced search, notes and flashcards — to get organized, get the work done quicker and get results. Plus, with the app, put textbooks in your pocket and learn wherever. It's time to upgrade the textbook and simplify learning, so you can have time to live too.

Pearson eText is an easy-to-use digital textbook available from Pearson+. Make it your own by adding notes and highlights. Download the Pearson+ mobile app to learn on the go, even offline. Listen on the go with our new audiobook feature, available for most titles.

When you choose a plan, you're signing up for a 4-month term. We will charge your payment method each month until your 4-month term has ended. After that, we'll automatically renew your subscription and charge you on a month-to-month basis unless you turn off auto-renewal in My account.

When you purchase a Pearson+ subscription, it will last a minimum of 4 months, and then automatically renew each month thereafter unless you turn off auto-renew in My account.

If you want to stop your subscription at the end of your 4-month term, simply turn off auto-renew from My account. To avoid the next payment charge, make sure you turn auto renewal off 1 day before the auto renewal date.

You can subscribe again after auto-renew has been turned off by purchasing another Pearson+ subscription.

We use your credit card to renew your subscription automatically. To make sure your learning is uninterrupted, please check your card details before your first monthly payment.

With a Multi Pearson+ subscription plan, you can download up to 5 titles on the Pearson+ app from My list on each of your authorized devices every month.

When you're using your Multi Pearson+ subscription plan in a browser, you can select and read from as many titles as you like.