Skip to main content
All Calculators & ConvertersAll calculators

Enter solution data

Assumes 25 °C water (A = 0.509, B = 0.328). See model comparison ↓
ν+ (cations) ν (anions) e.g., NaCl → 1 & 1; MgCl₂ → 1 & 2

Show:

Add each ionic species present (not the neutral formula). For Extended DH, include ai (Å).

Result:

No results yet. Enter inputs and click Calculate.

How to use this calculator

  • Pick a model: Davies is a solid default up to moderate ionic strength; Extended DH lets you include ion size ai (Å).
  • Choose basis: use molality when possible; molarity is acceptable for dilute aqueous solutions.
  • Add ions: one row per ionic species with charge z and amount (m or c). For Extended DH, add ai.
  • Set ν+, ν: enter electrolyte stoichiometric coefficients to report γ±.
  • Use Quick picks to prefill examples; edit any field and click Calculate.

Formula & Equation Used

Ionic strength: I = ½ Σ mi zi2

Debye–Hückel (limiting): log₁₀γi = −A zi2 √I

Davies: log₁₀γi = −A zi2 [ √I/(1+√I) − 0.3 I ]

Extended Debye–Hückel: log₁₀γi = −A zi2 [ √I / (1 + B ai √I ) ]

Mean coefficient: γ± = (γ+ν+ γν−)1/(ν+ + ν−)

Here A=0.509, B=0.328 for water at 25 °C.

Which model should I choose?

  • Debye–Hückel (limiting law) — for very dilute solutions (I ≲ 0.01). It’s the simplest but least accurate beyond trace concentrations.
  • Davies equation — a great all-around choice for most laboratory salt solutions (0.01 ≲ I ≲ 0.5). It balances simplicity and accuracy and doesn’t require ion-size parameters.
  • Extended Debye–Hückel — recommended for multivalent or mixed electrolytes. Requires ion-size ai (Å) but performs more smoothly at higher ionic strengths up to about I ≈ 0.5.
  • Beyond 0.5 M (e.g., seawater, brines) — Debye–Hückel-type models break down; use Pitzer or SIT equations instead.

These guidelines assume 25 °C water. Acceptable ranges shift slightly with temperature and solvent dielectric constant.

Example Problems & Step-by-Step Solutions

Example 1 — 0.10 m NaCl (Davies)

Ions: Na⁺ (z=+1, m=0.10), Cl⁻ (z=−1, m=0.10).
1) Ionic strength: I = ½[(0.10)(1²) + (0.10)(1²)] = 0.10.
2) √I = 0.316; term = √I/(1+√I) − 0.3I ≈ 0.240 − 0.030 = 0.210.
3) log₁₀γNa+ = log₁₀γCl− = −(0.509)(1)(0.210) ≈ −0.107 → γ ≈ 0.78.
4) Mean γ± (1:1) ≈ 0.78.

Example 2 — 0.010 m MgCl₂ (Davies)

Ions: Mg²⁺ (z=+2, m=0.010), Cl⁻ (z=−1, m=0.020).
1) I = ½[(0.010)(2²) + (0.020)(1²)] = 0.03; √I = 0.173.
2) term ≈ 0.173/(1+0.173) − 0.3×0.03 ≈ 0.148 − 0.009 = 0.139.
3) log₁₀γMg²+ = −0.509×4×0.139 ≈ −0.282 → γ ≈ 0.52;
log₁₀γCl− = −0.509×1×0.139 ≈ −0.071 → γ ≈ 0.85.
4) Mean γ± (1:2) = (γ+ γ2)1/3 ≈ (0.52×0.85²)1/30.72.

Frequently Asked Questions

Q: Molality or molarity?

Debye–Hückel theory is formally molality-based. For dilute aqueous solutions, molarity is a good approximation.

Q: What ai should I use?

Use effective hydrated ion sizes (Å). If unknown, values between 3–9 Å are typical; results are not very sensitive at low I.

Q: Temperature?

This calculator assumes 25 °C (A=0.509, B=0.328). At other temperatures, A and B vary with solvent properties.

Molality
14. Solutions
4 problems
Topic
Jules
Solutions: Solubility and Intermolecular Forces
14. Solutions
6 problems
Topic
Jules
Osmotic Pressure
14. Solutions
5 problems
Topic
Jules
The Colligative Properties
14. Solutions
6 problems
Topic
Jules
Mole Fraction
14. Solutions
4 problems
Topic
Jules
Intro to Henry's Law
14. Solutions
4 problems
Topic
Jules
Henry's Law Calculations
14. Solutions
4 problems
Topic
Jules
Solubility Product Constant: Ksp
18. Aqueous Equilibrium
6 problems
Topic
Jules
Ksp: Common Ion Effect
18. Aqueous Equilibrium
5 problems
Topic
Jules
Selective Precipitation
18. Aqueous Equilibrium
3 problems
Topic
Jules
Complex Ions: Formation Constant
18. Aqueous Equilibrium
6 problems
Topic
Jules
Intro to Buffers
18. Aqueous Equilibrium
4 problems
Topic
Jules
Henderson-Hasselbalch Equation
18. Aqueous Equilibrium
7 problems
Topic
Jules
Equilibrium Constant (K)
16. Chemical Equilibrium
6 problems
Topic
Jules
Equilibrium Constant Calculations
16. Chemical Equilibrium
7 problems
Topic
Jules
Kp and Kc
16. Chemical Equilibrium
6 problems
Topic
Jules
Reaction Quotient
16. Chemical Equilibrium
5 problems
Topic
Jules
Gibbs Free Energy
19. Chemical Thermodynamics
7 problems
Topic
Jules
Gibbs Free Energy & Equilibrium
19. Chemical Thermodynamics
7 problems
Topic
Jules
Cell Potential: The Nernst Equation
20. Electrochemistry
7 problems
Topic
Jules
Cell Potential and Equilibrium
20. Electrochemistry
6 problems
Topic
Jules
Partial Pressure
7. Gases
7 problems
Topic
Jules
Mole Fraction
7. Gases
5 problems
Topic
Jules
14. Solutions - Part 1 of 3
4 topics 12 problems
Chapter
Jules
14. Solutions - Part 2 of 3
5 topics 12 problems
Chapter
Jules
14. Solutions - Part 3 of 3
5 topics 12 problems
Chapter
Jules
18. Aqueous Equilibrium - Part 1 of 3
5 topics 14 problems
Chapter
Jules
18. Aqueous Equilibrium - Part 2 of 3
7 topics 13 problems
Chapter
Jules
18. Aqueous Equilibrium - Part 3 of 3
5 topics 13 problems
Chapter
Jules
16. Chemical Equilibrium - Part 1 of 2
5 topics 13 problems
Chapter
Jules
16. Chemical Equilibrium - Part 2 of 2
5 topics 13 problems
Chapter
Jules
19. Chemical Thermodynamics - Part 1 of 2
5 topics 11 problems
Chapter
Jules
19. Chemical Thermodynamics - Part 2 of 2
3 topics 10 problems
Chapter
Jules
20. Electrochemistry - Part 1 of 3
4 topics 11 problems
Chapter
Jules
20. Electrochemistry - Part 2 of 3
4 topics 11 problems
Chapter
Jules
20. Electrochemistry - Part 3 of 3
5 topics 11 problems
Chapter
Jules
7. Gases - Part 1 of 4
5 topics 14 problems
Chapter
Jules
7. Gases - Part 2 of 4
5 topics 13 problems
Chapter
Jules
7. Gases - Part 3 of 4
5 topics 13 problems
Chapter
Jules
7. Gases - Part 4 of 4
5 topics 13 problems
Chapter
Jules