Predict how a mutation that caused continuous production of active p53 would affect the cell.
The Hawaiian bobtail squid (Euprymna scolopes) is able to glow from luminescent Vibrio fischeri bacteria held in its light organs. As it swims at night near the ocean surface, it adjusts the amount of light visible to predators below to match the light from the stars and moon. Predators have difficulty seeing the illuminated squid against the night sky. The bacteria glow in response to a molecule that regulates expression of genes involved in light-producing chemical reactions. The regulator controls production of the genes' mRNA. Therefore, the light-producing genes are undera. transcriptional control.b. translational control.c. post-translational control.d. negative control.
Verified step by step guidance
Verified video answer for a similar problem:
Key Concepts
Transcriptional Control
Gene Expression Regulation
Luminescent Bacteria Symbiosis
In the follow-up work to the experiment shown in Figure 19.6, the researchers used a technique that allowed them to see if two DNA sequences are in close physical proximity (association). They applied this method to examine how often an enhancer and the core promoter of the Hnf4a regulatory gene were near each other. A logical prediction is that compared with rats born to mothers fed a healthy diet, the Hnf4a gene in rats born to mothers fed a protein-poor diet would
a. Show no difference in how often the promoter and enhancer associated
b. Never show any promoter–enhancer association
c. Show a lower frequency of promoter–enhancer association
d. Show a higher frequency of promoter–enhancer association
Imagine repeating the experiment on epigenetic inheritance that is shown in Figure 19.6. You measure the amount of radioactive uridine (U) incorporated into Hnf4a mRNA in counts per minute (cpm) to determine the level of Hnf4a gene transcription in rats born to mothers fed either a normal diet or a low-protein diet. The results are 11,478 cpm for the normal diet and 7368 cpm for the low-protein diet. For this problem, your task is to prepare a graph similar to the one at the bottom of Figure 19.6 that shows the normalized results for the low-protein diet relative to the normal diet. Normalizing values means that the value obtained from one condition is expressed as 1.0 (the norm; the normal diet in this case) and the values obtained from any other conditions (low-protein diet in this case) are expressed as decimal values relative to the norm.
