Coulomb’s Law Calculator
Calculate the electrostatic force between two point charges using Coulomb’s law. Solve for Force (F), Charge (q₁ or q₂), or Distance (r) with unit support, sign-aware attraction vs. repulsion, a mini force diagram, and optional step-by-step.
Background
Coulomb’s law describes the electric force between two charges: F = k \dfrac{|q_1 q_2|}{r^2}. The force is repulsive for like charges (+/+ or −/−) and attractive for opposite charges (+/−).
How to use this calculator
- Choose what to solve for (F, q₁, q₂, or r).
- Enter the other values with units (charges can be ±).
- Click Calculate to compute the missing quantity.
- Turn on Steps to see conversions and the substituted formula.
How this calculator works
- Converts inputs to base SI units: C, m, N.
- Uses Coulomb’s law F = k\frac{|q_1 q_2|}{r^2} with k = 8.9875517923\times10^9.
- Determines attraction vs. repulsion from the signs of q₁ and q₂.
Formula & Equation Used
Coulomb’s law: F = k \dfrac{|q_1 q_2|}{r^2}
Solve for distance: r = \sqrt{k \dfrac{|q_1 q_2|}{F}}
Solve for charge: |q_1| = \dfrac{F r^2}{k |q_2|} (sign comes from direction choice)
Example Problems & Step-by-Step Solutions
Example 1 — +2 µC and −1 µC separated by 10 cm
- Convert to SI: \( q_1=2\times10^{-6}\,C,\; q_2=-1\times10^{-6}\,C,\; r=0.10\,m \).
- Compute magnitude with Coulomb’s law: \( F = k \dfrac{|q_1 q_2|}{r^2} \).
- Substitute and calculate: \( F = (8.99\times10^9)\dfrac{|(2\times10^{-6})(1\times10^{-6})|}{(0.10)^2} \approx 1.80\,N \).
- Signs are opposite, so the force is attractive.
Example 2 — Like charges repel: +1 µC and +1 µC separated by 5 cm
- Convert to SI: \( q_1=1\times10^{-6}\,C,\; q_2=1\times10^{-6}\,C,\; r=0.05\,m \).
- Substitute: \( F = (8.99\times10^9)\dfrac{|(1\times10^{-6})(1\times10^{-6})|}{(0.05)^2} \).
- Compute: \( F = (8.99\times10^9)\dfrac{1\times10^{-12}}{2.5\times10^{-3}} \approx 3.60\,N \).
- Both charges are positive, so the force is repulsive.
Example 3 — Solve for distance: q₁ = 3 µC, q₂ = 2 µC, and F = 0.54 N
- Convert to SI: \( q_1=3\times10^{-6}\,C,\; q_2=2\times10^{-6}\,C,\; F=0.54\,N \).
- Rearrange for distance: \( r=\sqrt{k\dfrac{|q_1q_2|}{F}} \).
- Substitute: \( r=\sqrt{(8.99\times10^9)\dfrac{|(3\times10^{-6})(2\times10^{-6})|}{0.54}} \).
- Compute: \( |q_1q_2|=6\times10^{-12} \), so \( r=\sqrt{\dfrac{(8.99\times10^9)(6\times10^{-12})}{0.54}}=\sqrt{0.0999}\approx 0.316\,m \).
- Convert if needed: \( 0.316\,m \approx 31.6\,cm \).
Frequently Asked Questions
Q: Why do we use absolute value in Coulomb’s law?
The formula gives the magnitude. Direction (attract vs repel) comes from the signs of the charges.
Q: What if my charges aren’t point charges?
Coulomb’s law is best when charge sizes are small compared to r. For extended objects, the field can vary across the object.
Q: What constant does the calculator use?
It uses k = 8.9875517923\times10^9\,N\cdot m^2/C^2.