Skip to main content
Pearson+ LogoPearson+ Logo
Ch. 18 - Control of Gene Expression in Bacteria
Freeman - Biological Science 7th Edition
Freeman7th EditionBiological ScienceISBN: 9783584863285Not the one you use?Change textbook
Chapter 18, Problem 10

X-gal is a colorless, lactose-like molecule that can be split into two fragments by ββ-galactosidase. One of these product molecules creates a blue color. The photograph here shows E. coli colonies growing in a medium that contains X-gal. Find three colonies whose cells have functioning copies of ββ-galactosidase. Find three colonies whose cells might have mutations in the lacZ or the lacY genes. Suppose you analyze the protein-coding sequence of the lacZ and lacY genes of cells from the three mutant colonies and find that these sequences are wild type (normal). What other region of the lac operon might be altered to account for the mutant phenotype of these colonies?

Verified step by step guidance
1
Identify the colonies that are blue in color. These colonies have cells with functioning β-galactosidase, which indicates that the lacZ gene is active and the enzyme is cleaving X-gal into a blue product.
Identify the colonies that are colorless or white. These colonies likely have cells with mutations in the lacZ or lacY genes, preventing the production of functional β-galactosidase or its proper activity, resulting in the inability to cleave X-gal and produce the blue color.
Collect samples from the three mutant (colorless or white) colonies for genetic analysis to confirm the presence of mutations in the lacZ or lacY genes.
If the genetic analysis shows that the lacZ and lacY genes are wild type in the mutant colonies, consider the possibility of mutations in other regulatory regions of the lac operon, such as the promoter (P) or the operator (O) regions, which are crucial for the transcriptional regulation of the lac operon.
Investigate the promoter and operator regions of the lac operon in the mutant colonies for mutations or alterations that could affect the binding of regulatory proteins, thereby influencing the expression of the lacZ and lacY genes and leading to the observed mutant phenotype.

Verified video answer for a similar problem:

This video solution was recommended by our tutors as helpful for the problem above.
Video duration:
2m
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Lac Operon

The lac operon is a set of genes in E. coli that are involved in the metabolism of lactose. It includes genes such as lacZ, which encodes β-galactosidase, and lacY, which encodes a permease that facilitates lactose uptake. The operon is regulated by the presence or absence of lactose, allowing the bacteria to efficiently use lactose as an energy source when available.
Recommended video:
Guided course
07:06
The Lac Operon

β-galactosidase

β-galactosidase is an enzyme produced by the lacZ gene that catalyzes the hydrolysis of lactose into glucose and galactose. In the context of the experiment with X-gal, β-galactosidase also cleaves X-gal, resulting in a blue color, indicating the presence of functional enzyme activity. Mutations in the lacZ gene can lead to a lack of this enzyme, affecting the ability of E. coli to metabolize lactose and X-gal.

Regulatory Elements of the Lac Operon

In addition to the structural genes like lacZ and lacY, the lac operon contains regulatory elements such as the promoter and the operator. Mutations in these regions can affect the transcription of the operon, leading to a lack of enzyme production even if the coding sequences are normal. Understanding these regulatory mechanisms is crucial for identifying why certain colonies may exhibit a mutant phenotype despite having wild-type sequences in the structural genes.
Recommended video:
Guided course
07:06
The Lac Operon
Related Practice
Textbook Question
Explain why it makes sense for the lexA regulatory gene of the SOS regulon to be expressed constitutively.
834
views
Textbook Question
IPTG is a molecule with a structure much like lactose. IPTG can be transported into cells by galactoside permease and can bind to the lac repressor protein. However, unlike lactose, IPTG is not broken down by ββ-galactosidase. Predict what would occur to lac operon regulation if IPTG were added to E. coli growth medium containing no glucose or lactose.
1474
views
Textbook Question
In a mutant that lacks adenylyl cyclase, the enzyme that synthesizes cAMP, predict which of the following conditions of extracellular lactose and glucose would cause regulation of the lac operon to differ from that of wild-type cells.a. no lactose, no glucoseb. no lactose, abundant glucosec. abundant lactose, no glucosed. abundant lactose, abundant glucose
822
views
Textbook Question

The Hawaiian bobtail squid (Euprymna scolopes) is able to glow from luminescent Vibrio fischeri bacteria held in its light organs. As it swims at night near the ocean surface, it adjusts the amount of light visible to predators below to match the light from the stars and moon. Predators have difficulty seeing the illuminated squid against the night sky.

The bacteria glow in response to a molecule that regulates expression of genes involved in light-producing chemical reactions. The regulator controls production of the genes' mRNA. Therefore, the light-producing genes are under

a. Transcriptional control.

b. Translational control.

c. Post-translational control.

d. Negative control.

508
views
Textbook Question
The light-producing genes of V. fischeri are organized in an operon that is under positive control by an activator protein called LuxR. Would you expect the genes of this operon to be transcribed when LuxR is bound or not bound to a DNA regulatory sequence? Explain.
752
views
Textbook Question
The diagram shown here is a model of the gene regulatory circuit for light production by V. fischeri cells. The lux operon contains genes for luminescence (luxCDABE) and a gene, luxI, that encodes an enzyme that catalyzes the production of an inducer. This inducer easily moves back and forth across the plasma membrane and acts as a signaling molecule. The lux operon is never completely turned off. The luxR gene codes for the activator LuxR. The inducer can bind to LuxR, and when it does, the LuxR–inducer complex can bind to a regulatory site to activate transcription of the lux operon and inhibit transcription of luxR. Explain how this gene regulatory circuit accounts for bacteria emitting light only when they reach a high cell density.
816
views