Streptococcus mutans obtains energy by oxidizing sucrose. This bacterium is abundant in the mouths of Western European and North American children and is a prominent cause of cavities. The organism is virtually absent in children from East Africa, where tooth decay is rare. Propose a hypothesis to explain this observation. Outline the design of a study that would test your hypothesis.
Verified step by step guidance
Verified video answer for a similar problem:
Key Concepts
Metabolism of Streptococcus mutans
Ecological Factors in Oral Microbiome
Hypothesis Testing and Study Design
Biologists often use the term 'energy source' as a synonym for 'electron donor.' Why?
The text claims that the evolution of an oxygen-rich atmosphere paved the way for increasingly efficient cellular respiration and higher growth rates in organisms. Explain.
Suppose that you've been hired by a firm interested in using bacteria to clean up organic solvents found in toxic waste dumps. Your new employer is particularly interested in finding cells that are capable of breaking a molecule called benzene into less-toxic compounds. Where would you go to look for bacteria that can metabolize benzene as an energy or carbon source? How would you design an enrichment culture capable of isolating benzene-metabolizing species?
The traditional tree of life (shown above) presents the three domains as distinct, monophyletic lineages. However, other hypotheses propose different views on the relationships among the Archaea, Bacteria, and Eukarya. In particular, the two-domain hypothesis—or eocyte hypothesis—is emerging as a well-supported alternative to the three-domain hypothesis. The eocyte hypothesis, illustrated below, suggests that eukaryotes evolved from eocytes (also known as the Crenarchaeota—a major lineage of the Archaea). Resolving the relationships among these ancient lineages is difficult, but it has profound implications on our understanding of the origin of eukaryotic cells.
Why are Archaea considered a monophyletic group according to the three-domain hypothesis?
a. Because this group includes all organisms except eukaryotes.
b. Because this group includes an ancestral population and all of its descendants.
c. Because all members of this group lack membrane-bound organelles.
d. Because this group evolved after the origin of bacteria.
