Calculus
Use the following limit definition to determine the slope of the line tangent to the graph of ff at PP, where f(x)=19x3f\left(x\right)=\frac{19}{x^3} and P(−1,−19)P\left(-1,-19\right):
mtan=limx→af(x)−f(a)x−am_\text{tan}=\displaystyle \lim_{x \to a}{\frac{f(x)-f(a)}{x-a}}
Determine the equation of the line perpendicular to the tangent line of the curve y=2x+5 y = 2x + 5 at the point Q(2,9) Q(2, 9) .
Let f(x)=h(g(x))f^{}\left(x\right)=h\left(g\left(x\right)\right). Calculate f′(4)f^{\prime}\left(4\right) using the following table:
Determine the derivative of the function f(x)=f\left(x\right)= 4x44x^4 using the definition:
f′(x)=limh→0 f(x+h)−f(x)hf^{\prime}\left(x\right)={\displaystyle\lim_{h\to0}}\text{ }\frac{f\left(x+h\right)-f\left(x\right)}{h}
The graph of a function y=j(x)y=j\left(x\right) is given below. Use this graph to draw the graph of its derivative j′(x)j^{\prime}\left(x\right).
Given the graph of a function f(x)f\left(x\right), draw the graph of f′(x)f^{\prime}\left(x\right).
Determine the values of x∈(−3,3)x\in\left(-3,3\right) at which ff is not differentiable using the following graph: