text.skipToContent text.skipToNavigation
  1. Home
  2. Science & Engineering
  3. Electrical & Computer Engineering
  4. Controls
  5. Modern Control Engineering (All Inclusive)

Modern Control Engineering, 5th edition

  • Katsuhiko Ogata

Published by Pearson (August 25th 2009) - Copyright © 2010

5th edition

Chosen format
View all
Modern Control Engineering (All Inclusive)

ISBN-13: 9780134250885

Includes: Instant Access

This product is not available in your country

What's included

  • Instant Access

    You'll get instant access to the digital content.

Overview

Table of contents

Contents

Preface

Chapter 1 Introduction to Control Systems

1—1 Introduction

1—2 Examples of Control Systems

1—3 Closed-Loop Control versus Open-Loop Control

1—4 Outline of the Book

 

Chapter 2 Mathematical Modeling of Control Systems

2—1 Introduction

2—2 Transfer Function and impulse Response Function

2—3 Atomatic Control Systems

2—4 Modeling in state space

2—5 State-Space Representation of Scalar Differential Equation System

2—6 Transformation of Mathematical models with MATLAB

2—7 Linearization of Nonlinear Mathematical Models

Example Problems and Solutions Problems

 

Chapter 3 Mathematical Modeling of Mechanical Systems and Electrical Systems

3—1 Introduction

3—2 Mathematical Modeling of Mechanical Systems

3—3 Mathematical Modeling of Electrical Systems

Example Problems and Solutions Problems

 

Chapter 4 Mathematical Modeling of Fluid Systems

and Thermal Systems

4—1 Introduction 152

4—2 Liquid-Level Systems

4—3 Pneumatic Systems

4—4 Hydraulic Systems

4—5 Thermal Systems

Example Problems and Solutions Problems

 

Chapter 5 Transient and Steady-State Response Analyses

5—1 Introduction

5—2 First-Order Systems

5—3 Second-Order Systems

5—4 Higher Order Systems

5—5 Transient-Response Analysis with MATLAB

5—6 Routh’s Stability Criterion

5—7 Effects of Integral and Derivative Control Actions on System

Performance 

5—8 Steady-State Errors in Unity-Feedback Control Systems

Example Problems and Solutions Problems

 

Chapter 6 Control Systems Analysis and design by the Root-Locus Method

6—1 Introduction

6—2 Root-Locus Plots

6—3 plotting Root Loci with MATLAB

6—4 Root-Locus Plots of Positive Feedback Systems

6—5 Root-Locus Approach to control Systems Design

6—6 Lead Compensation

6—7 Lag Compensation

6-8 Lag-Lead Compensation

Example Problems and Solutions Problems

 

Chapter 7 Control Systems Analysis and Design by the Frequency Response Method 

7—1 Introduction

7—2 Bode Digrams

7—

For teachers

All the material you need to teach your courses.

Discover teaching material