Calculus
Refer to the graph of the function f(x)f(x)f(x) to find the given limit if exists. If the limit does not exist, write "DNE".
limx→3f(x){\displaystyle\lim_{x\to3}f\left(x\right)}
Find the following limits and identify the horizontal asymptotes (if any) for the function g(x)=4x2+5x−32x2−7g\left(x\right)=\frac{4x^2+5x-3}{2x^2-7}:
limx→∞g(x)\lim_{x\rightarrow\infty}g\left(x\right)
limx→−∞g(x)\lim_{x\rightarrow-\infty}g\left(x\right)
Consider the transcendental function f(x)=5e−xf\left(x\right)=5e^{-x}. What is the end behavior of this function as xx approaches ∞\infty and −∞-\infty? Sketch a graph of the function, showing asymptotes if they exist.
Evaluate the limit as x→−∞x\to-\infty of the function f(x)=cot−1(5x)f\left(x\right)=\cot^{-1}\left(5x\right) using its graph.
Select the correct relationship between ϵ\epsilon and δ\delta to prove limx→0(5x2)=0{\displaystyle\lim_{x\to0}}\left(5x^2\right)=0 using the ε−δ\varepsilon-\delta definition of a limit.