Learning Deep Learning: Theory and Practice of Neural Networks, Computer Vision, Natural Language Processing, and Transformers Using TensorFlow, 1st edition
Published by Addison-Wesley Professional (July 19, 2021) © 2022
- Magnus Ekman
- Available for purchase from all major ebook resellers, including InformIT.com
Price Reduced From: $74.99
Details
- A print text
- Free shipping
- Also available for purchase as an ebook from all major ebook resellers, including InformIT.com
NVIDIA's Full-Color Guide to Deep Learning: All StudentsNeed to Get Started and Get Results
Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this text can be used for students with prior programming experince but with no prior machine learning or statistics experience.
After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains a natural language translator and a system generating natural language descriptions of images.
Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning.
- Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation
- See how DL frameworks make it easier to develop more complicated and useful neural networks
- Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis
- Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences
- Master NLP with sequence-to-sequence networks and the Transformer architecture
- Build applications for natural language translation and image captioning
Need help? Get in touch