Crafting A Compiler, 1st edition

Published by Pearson (October 28, 2009) © 2010

  • Charles N. Fischer University of Wisconsin-Madison
  • Richard J. LeBlanc Georgia Institute of Technology
  • Ron K. Cytron Washington University



  • Easy-to-use search and navigation
  • Add notes and highlights
  • Search by keyword or page

  • Hardcover, paperback or looseleaf edition
  • Affordable rental option for select titles
  • Free shipping on looseleafs and traditional textbooks
A practical yet thorough treatment of compiler construction.

Crafting a Compiler is an undergraduate-level text that presents a practical approach to compiler construction with thorough coverage of the material and examples that clearly illustrate the concepts in the book. Unlike other texts on the market, Fischer/Cytron/LeBlanc uses object-oriented design patterns and incorporates an algorithmic exposition with modern software practices. The text and its package of accompanying resources allow any instructor to teach a thorough and compelling course in compiler construction in a single semester. Crafting a Compiler  serves as an ideal reference and tutorial.

Use of modern object-oriented patterns (such as Visitor)

Many students are already familiar with object-oriented patterns, and these patterns tend to organize software in such a way that the resulting compliers are more clear and more easily understood, so their use throughout the book allows students to absorb the concepts more readily. For students who have not seen these patterns, their use in a compiler is a compelling example.

Example:  Code generation is cast as a visit of the AST

Use of pseudocode in algorithms

This book offers superior coverage of the algorithms used in the front- and back-end of the compiler.  Unlike other texts that can lead to frustration with a mix of detail and abstraction that can be confusing to students, this book patterns the pseudocode after popular algorithm texts, such as Cormen, Leiserson, Rivest that most students have seen before.

Example:  Many algorithms in a compiler involve sets.  Instead of using low-level data structures to represent sets, they are referenced in pseudocode as sets.  Most languages include implementation of set operations, and those could simply be used for implementing the algorithms.  Students and professors who wish to study the algorithms at  a deeper level can devise more efficient data structures after the basic concepts have been studied.

Exercises as Knowledge-based Inquiry

Most chapters include exercises that are meant to inspire professor- or student-directed exploration. The authors find that such “knowledge-based inquiry” is more fun for students and leads to better retention of concepts. The text forms the foundation for such exploration, but the student and professors are guided into further study by these exercises.

Abstract Syntax Tree (AST) is a pivotal element of the exposition

The book is neatly divided into the phases that construct the AST and those that process the AST.  In contrast with other books, the design and implementation of the AST is forefront in the text, and serves as a central element in type checking and code generation. Interfaces implemented by AST nodes trigger actions by the various compiler phases. As a result, students need not read or write as much code, and new elements are easily incorporated into the AST.

Example:  Type checking can be implemented by visiting the tree and processing interfaces that specify how type rules apply to a given subtree. Semantic changes or additions can be implemented by changing these interfaces and their behavior in the visitors that process the AST.

Supplementary materials

Various components of the compiler can be provided to students so they can focus on the elements of particular interest in a given course offering.

Example:  A front end could be given for parsing Java, and students can then focus on type checking or code generation.  Or, students could develop and incorporate language extensions into the front end, with the back end mostly provided by the instructor.

Chapter 1 Introduction

1.1 Overview and History of Compilation

1.2 What Compilers Do

    1.2.1 Distinguishing Compilers by the Machine Code Generated

    1.2.2 Target Code Formats

1.3 Interpreters

1.4 Syntax and Semantics of Programming Languages

    1.4.1 Static Semantics

    1.4.2 Run-time Semantics

1.5 Organization of a Compiler

    1.5.1 The Scanner

    1.5.2 The Parser

    1.5.3 The Type Checker (Semantic Analysis)

    1.5.4 The Optimizer

    1.5.5 The Code Generator

    1.5.6 Compiler Writing Tools

1.6 Compiler Design and Programming Language Design

1.7 Architectural Influences of Computer Design

1.8 Compiler Variants

    1.8.1 Debugging (Development) Compilers

    1.8.2 Optimizing Compilers

    1.8.3 Retargetable Compilers

1.9 Program Development Environment


Chapter 2 A Simple Compiler

2.1 An Informal Definition of the ac Language

2.2 Formal Definition of ac

    2.2.1 Syntax Specification

    2.2.2 Token Specification

2.3 Phases of a Simple Compiler

2.4 Scanning

2.5 Parsing

    2.5.1 Predicting a Parsing Procedure

    2.5.2 Implementing the Production

2.6 Abstract Syntax Trees

2.7 Semantic Analysis

    2.7.1 Symbol Tables

    2.7.2 Type Checking

2.8 Code Generation


Chapter 3 Scanning–Theory and Practice

3.1 Overview of a Scanner

3.2 Regular Expressions

3.3 Examples

3.4 Finite Automata and Scanners

    3.4.1 Deterministic Finite Automata

3.5 The Lex Scanner Generator

    3.5.1 Defining Tokens in Lex

    3.5.2 The Character Class

    3.5.3 Using Regular Expressions to Define Tokens

    3.5.4 Character Processing Using Lex

3.6 Other Scanner Generators

3.7 Practical Considerations of Building Scanners

    3.7.1 Processing Identifiers and Literals

    3.7.2 Using Compiler Directives and Listing Source Lines

    3.7.3 Terminating the Scanner

    3.7.4 Multicharacter Lookahead

    3.7.5 Performance Considerations

    3.7.6 Lexical Error Recovery

3.8 Regular Expressions and Finite Automata

    3.8.1 Transforming a Regular Expression into an NFA

    3.8.2 Creating the DFA

    3.8.3 Optimizing Finite Automata

3.9 Summary


Chapter 4 Grammars and Parsing

4.1 Context-Free Grammars: Concepts and Notation

    4.1.1 Leftmost Derivations

    4.1.2 Rightmost Derivations

    4.1.3 Parse Trees

    4.1.4 Other Types of Grammars

4.2 Properties of CFGs

    4.2.1 Reduced Grammars

    4.2.2 Ambiguity

    4.2.3 Faulty Language Definition

4.3 Transforming Extended Grammars

4.4 Parsers and Recognizers

4.5 Grammar Analysis Algorithms

    4.5.1 Grammar Representation

    4.5.2 Deriving the Empty String

    4.5.3 First Sets

    4.5.4 Follow Sets


Chapter 5 Top-Down Parsing

5.1 Overview

5.2 LL(k) Grammars

5.3 Recursive-Descent LL(1) parsers

5.4 Table-Driven LL(1) Parsers

5.5 Obtaining LL(1) Grammars

    5.5.1 Common Prefixes

    5.5.2 Left-Recursion

5.6 A Non-LL(1) Language

5.7 Properties of LL(1) Parsers

5.8 Parse-Table Representation

    5.8.1 Compaction

    5.8.2 Compression

5.9 Syntactic Error Recovery and Repair

    5.9.1 Error Recover

    5.9.2 Error Repair

    5.9.3 Error Detection in LL(1) Parsers

    5.9.4 Error Recovery in LL(1) Parsers


Chapter 6 Bottom-Up Parsing

6.1 Introduction

6.2 Shift-Reduce Parsers

    6.2.1 LR Parsers and Rightmost Derivations

    6.2.2 LR Parsing as Knitting

    6.2.3 LR Parsing Engine

    6.2.4 The LR Parse Table

    6.2.5 LR(k) Parsing

6.3 LR(0) Table Construction

6.4 Conflict Diagnosis

    6.4.1 Ambiguous Grammars

    6.4.2 Grammars that are not LR(k)

6.5 Conflict Resolution for LR(0) Tables

    6.5.1 SLR(k) Table Construction

    6.5.2 LALR(k) Table Construction

6.6 LR(k) Table Construction


Chapter 7 Syntax-Directed Translation

7.1 Overview

    7.1.1 Semantic Actions and Values

    7.1.2 Synthesized and Inherited Attributes

7.2 Bottom-Up Syntax-Directed Translation

    7.2.1 Example

    7.2.2 Rule Cloning

    7.2.3 Forcing Semantic Actions

    7.2.4 Aggressive Grammar Restructuring

7.3 Top-Down Syntax-Directed Translation

7.4 Abstract Syntax Trees

    7.4.1 Concrete and Abstract Trees

    7.4.2 An Efficient AST Data Structure

    7.4.3 Infrastructure for Creating ASTs

7.5 AST Design and Construction

    7.5.1 Design

    7.5.2 Construction

7.6 AST Structures for Left and Right Values

7.7 Design Patterns for ASTs

    7.7.1 Node Class Hierarchy

    7.7.2 Visitor Pattern

    7.7.3 Reflective Visitor Pattern


Chapter 8 Symbol Tables and Declaration Processing

8.1 Constructing a Symbol Table

    8.1.1 Static Scoping

    8.1.2 A Symbol Table Interface

8.2 Block-Structured Languages and Scope Management

    8.2.1 Handling Scopes

    8.2.2 One Symbol Table or Many?

8.3 Basic Implementation Techniques

    8.3.1 Entering and Finding Names

    8.3.2 The Name Space

    8.3.3 An Efficient Symbol Table Implementation

8.4 Advanced Features

    8.4.1 Records and Typenames

    8.4.2 Overloading and Type Hierarchies 
    8.4.3 Implicit Declarations

8.4.4 Export and Import Directives

    8.4.5 Altered Search Rules

8.5 Declaration Processing Fundamentals

    8.5.1 Attributes in the Symbol Table

    8.5.2 Type Descriptor Structures

    8.5.3 Type Checking Using an Abstract Syntax Tree

8.6 Semantic Processing of Simple Declarations

    8.6.1 Simple Variable Declarations

    8.6.2 Handling Type Names

    8.6.3 Name References

    8.6.4 Type Declarations and References

8.6.5 Variable Declarations Revisited

8.6.6 Enumeration Types

8.7 Semantic Processing for Simple Names and Expressions: An Introduction to Type Checking

    8.7.1 Handling Simple Identifiers and and Literal Constants

    8.7.2 Processing Expressions

8.8 Type Declarations

8.9 Static and Dynamic Allocation

    8.9.1 Initialization of Variables

    8.9.2 Constant Declarations

8.10 Classes and Structures

    8.10.1 Variant Records and Unions

8.11 Arrays

    8.11.1 Static One-Dimensional Arrays

    8.11.2 Multidimensional Arrays

8.12 Implementing Other Types

8.13 Key Idea Summary


Chapter 9 Expressions and Type Checking

9.1 Semantic Analysis for Control Structures

9.1.1 If Statements

9.1.2 While, Do and Repeat Loops

9.1.3 For Loops

9.1.4 Break, Continue, Return and Goto Statements

9.1.5 Switch and Case Statements

9.1.6 Exception Handling

9.2 Semantic Analysis of Calls


Chapter 10 Intermediate Representations

10.1 Overview

    10.1.1 Examples

    10.1.2 The Middle End

10.2 Java Virtual Machine

    10.2.1 Introduction and Design Principles

    10.2.2 Contents of a Class File

    10.2.3 JVM Instructions

10.3 Static Single Assignment Form

    10.3.1 Renaming and --functions

10.4 GCC ILs


Chapter 11 Code Generation for a Virtual Machine

11.1 Visitors for Code Generation

11.2 Class and Method Declarations

    11.2.1 Class Declarations

    11.2.2 Method Declarations

11.3 The MethodBodyVisitor

    11.3.1 Constants

    11.3.2 References to Local Storage

    11.3.3 Static References

    11.3.4 Expressions

    11.3.5 Assignment

    11.3.6 Method Calls

    11.3.7 Field References

    11.3.8 Conditional Execution

    11.3.9 Loops

11.4 The LHSVisitor

    11.4.1 Local References

    11.4.2 Static References

    11.4.3 Field References


Chapter 12 Runtime Support

12.1 Static Allocation

12.2 Stack Allocation

    12.2.1 Accessing Frames at Run-Time

    12.2.2 Handling Classes and Objects

    12.2.3 Handling Multiple Scopes

    12.2.4 Block-Level Allocation

    12.2.5 More About Frames

12.3 Heap Management

    12.3.1 Allocation Mechanisms

    12.3.2 Deallocation Mechanisms

    12.3.3 Automatic Garbage Collection


Chapter 13 Target Code Generation

13.1 Translating Bytecodes

    13.1.1 Allocating memory addresses

    13.1.2 Allocating Arrays and Objects

    13.1.3 Method Calls

    13.1.4 Example

13.2 Translating Expression Trees

13.3 Register Allocation and Temporary Management

    13.3.1 On the Fly Register Allocation

    13.3.2 Register Allocation Using Graph Coloring

    13.3.3 Priority Based Register Allocation

    13.3.4 Interprocedural Register Allocation

13.4 Code Scheduling

    13.4.1 Improving Code Scheduling

    13.4.2 Global and Dynamic Code Scheduling

13.5 Automatic Instruction Selection

    13.5.1 Instruction Selection Using BURS

    13.5.2 Instruction Selection Using Twig

    13.5.3 Other Approaches

13.6 Peephole Optimization

    13.6.1 Levels of Peephole Optimization

    13.6.2 Automatic Generation of Peephole Optimizers


Chapter 14 Program Optimization 505

14.1 Introduction

    14.1.1 Why Optimize?

    14.1.2 Organization

14.2 Data Flow Analysis

    14.2.1 Introduction and Examples

    14.2.2 Formal Specification

    14.2.3 Evaluation WARNING this subsection is incomplete

    14.2.4 Application of Data Flow Frameworks

14.3 Advanced Optimizations

    14.3.1 SSA Form

    14.3.2 SSA-based Transformations

    14.3.3 Loop Transformations




Need help? Get in touch

Privacy and cookies
By watching, you agree Pearson can share your viewership data for marketing and analytics for one year, revocable by deleting your cookies.

Pearson eTextbook: What’s on the inside just might surprise you

They say you can’t judge a book by its cover. It’s the same with your students. Meet each one right where they are with an engaging, interactive, personalized learning experience that goes beyond the textbook to fit any schedule, any budget, and any lifestyle.