Essential University Physics, 4th edition

Published by Pearson (January 4, 2019) © 2020

  • Richard Wolfson

eTextbook

per month

  • Anytime, anywhere learning with the Pearson+ app
  • Easy-to-use search, navigation and notebook
  • Simpler studying with flashcards

Mastering

from$84.99

  • Activate learning for future scientists
  • Tailor your course to fit your needs
  • Support students with guided practice

For 2- and 3-semester university physics courses.

Focus on the fundamentals

Essential University Physics is a concise and progressive calculus-based physics text that offers clear writing, great problems and relevant real-life applications in an affordable and streamlined approach. Author Richard Wolfson teaches sound problem-solving strategies and emphasizes conceptual understanding with annotated figures and step-by-step problem-solving strategies.

The 4th Edition incorporates research to expand problem sets and build a consistent problem-solving strategy. A new problem type helps students see patterns and connections between problems that can be solved using similar steps.

Hallmark features of this title

  • IDEA (Interpret, Develop, Evaluate, and Assess) framework is applied in every worked example. Each begins with key ideas, planning a solution/drawing a diagram, working through the math, checking for reasonable answers, and relating the problem's content to a broader understanding of physics.
  • Problem-Solving Strategy boxes follow the IDEA framework and provide detailed guidance for specific classes of physics problems.
  • Tactics boxes reinforce essential skills such as differentiation, setting up integrals, vector products, drawing free-body diagrams, simplifying series and parallel circuits, or ray tracing.
  • Got It? boxes provide quick checks for students to test their conceptual understanding.

New and additional features of this title

  • NEW: Example Variation Problems build in difficulty by changing scenarios and knowns vs. unknowns and adding complexity and a step of reasoning to help students see patterns and connections between problems that can be solved using similar steps.
  • NEW: Learning Outcomes succinctly state goals for each chapter, identifying for students what they should be learning and aiding in metacognition.
  • NEW: Each end-of-chapter problem is correlated with one or more learning outcomes.
  • NEW: Learning Outcomes Table at the start of each end-of-chapter problem set relates problems and helps students target what they don't know and prove what they do.
  • Every chapter includes Applications that explore modern examples of physics in the real world with Engineering applications preparing engineering students for the field.
  • MCAT-style Passage Problems in each chapter follow the format used on the MCAT exam, requiring students to investigate aspects of a real-life physical situation, typically biological in nature, as described in a reading passage.

Features of Mastering Physics for the 4th Edition

  • NEW: Enhanced End-of-Chapter Questions provide instructional support when and where students need it, including links to the eText, Video Tutor Solutions, math remediation, and wrong-answer feedback for homework assignments.
  • NEW: Example Variation build in difficulty by changing scenarios and knowns vs. unknowns and adding complexity and a step of reasoning to help students see patterns and connections between problems that can be solved using similar steps.
  • Interactive Prelecture Videos introduce key topics to help students prepare before lecture and to help professors identify student misconceptions. Quantitative Prelecture Videos complement Interactive Prelecture Videos and expose students to concepts before class to help them learn how problems for a specific concept are worked.
  • Video Tutor Solutions walk students through the problem-solving process.
  • Video Tutor Demonstrations feature "pause-and-predict" demonstrations of key physics concepts and incorporate assessment to engage students in understanding key concepts.
  • The Physics Primer relies on videos, hints, and feedback to refresh students' math skills in the context of physics and prepares them for success in the course.

Essential University Physics, 4th Edition is available in 3 versions:

  • Full Version, All Chapters: Chs 1-39
  • Volume 1: Chs 1-19
  • Volume 2: Chs 20-39
  1. Doing Physics
    • 1.1 Realms of Physics
    • 1.2 Measurements and Units
    • 1.3 Working with Numbers
    • 1.4 Strategies for Learning Physics

PART ONE: MECHANICS

  1. Motion in a Straight Line
    • 2.1 Average Motion
    • 2.2 Instantaneous Velocity
    • 2.3 Acceleration
    • 2.4 Constant Acceleration
    • 2.5 The Acceleration of Gravity
    • 2.6 When Acceleration Isn't Constant
  1. Motion in Two and Three Dimensions
    • 3.1 Vectors
    • 3.2 Velocity and Acceleration Vectors
    • 3.3 Relative Motion
    • 3.4 Constant Acceleration
    • 3.5 Projectile Motion
    • 3.6 Uniform Circular Motion
  1. Force and Motion
    • 4.1 The Wrong Question
    • 4.2 Newton's First and Second Laws
    • 4.3 Forces
    • 4.4 The Force of Gravity
    • 4.5 Using Newton's Second Law
    • 4.6 Newton's Third Law
  1. Using Newton's Laws
    • 5.1 Using Newton's Second Law
    • 5.2 Multiple Objects
    • 5.3 Circular Motion
    • 5.4 Friction
    • 5.5 Drag Forces
  1. Energy, Work, and Power
    • 6.1 Energy
    • 6.2 Work
    • 6.3 Forces That Vary
    • 6.4 Kinetic Energy
    • 6.5 Power
  1. Conservation of Energy
    • 7.1 Conservative and Nonconservative Forces
    • 7.2 Potential Energy
    • 7.3 Conservation of Mechanical Energy
    • 7.4 Nonconservative Forces
    • 7.5 Conservation of Energy
    • 7.6 Potential-Energy Curves
  1. Gravity
    • 8.1 Toward a Law of Gravity
    • 8.2 Universal Gravitation
    • 8.3 Orbital Motion
    • 8.4 Gravitational Energy
    • 8.5 The Gravitational Field
  1. Systems of Particles
    • 9.1 Center of Mass
    • 9.2 Momentum
    • 9.3 Kinetic Energy of a System
    • 9.4 Collisions
    • 9.5 Totally Inelastic Collisions
    • 9.6 Elastic Collisions
  1. Rotational Motion
    • 10.1 Angular Velocity and Acceleration
    • 10.2 Torque
    • 10.3 Rotational Inertia and the Analog of Newton's Law
    • 10.4 Rotational Energy
    • 10.5 Rolling Motion
  1. Rotational Vectors and Angular Momentum
    • 11.1 Angular Velocity and Acceleration Vectors
    • 11.2 Torque and the Vector Cross Product
    • 11.3 Angular Momentum
    • 11.4 Conservation of Angular Momentum
    • 11.5 Gyroscopes and Precession
  1. Static Equilibrium
    • 12.1 Conditions for Equilibrium
    • 12.2 Center of Gravity
    • 12.3 Examples of Static Equilibrium
    • 12.4 Stability

PART TWO: OSCILLATIONS, WAVES, AND FLUIDS

  1. Oscillatory Motion
    • 13.1 Describing Oscillatory Motion
    • 13.2 Simple Harmonic Motion
    • 13.3 Applications of Simple Harmonic Motion
    • 13.4 Circular Motion and Harmonic Motion
    • 13.5 Energy in Simple Harmonic Motion
    • 13.6 Damped Harmonic Motion
    • 13.7 Driven Oscillations and Resonance
  1. 14. Wave Motion
    • 14.1 Waves and Their Properties
    • 14.2 Wave Math
    • 14.3 Waves on a String
    • 14.4 Wave Energy
    • 14.5 Sound Waves
    • 14.6 Interference
    • 14.7 Reflection and Refraction
    • 14.8 Standing Waves
    • 14.9 The Doppler Effect and Shock Waves
  1. Fluid Motion
    • 15.1 Density and Pressure
    • 15.2 Hydrostatic Equilibrium
    • 15.3 Archimedes' Principle and Buoyancy
    • 15.4 Fluid Dynamics
    • 15.5 Applications of Fluid Dynamics
    • 15.6 Viscosity and Turbulence

PART THREE: THERMODYNAMICS

  1. Temperature and Heat
    • 16.1 Heat, Temperature, and Thermodynamic Equilibrium
    • 16.2 Heat Capacity and Specific Heat
    • 16.3 Heat Transfer
    • 16.4 Thermal-Energy Balance
  1. The Thermal Behavior of Matter
    • 17.1 Gases
    • 17.2 Phase Changes
    • 17.3 Thermal Expansion
  1. Heat, Work, and the First Law of Thermodynamics
    • 18.1 The First Law of Thermodynamics
    • 18.2 Thermodynamic Processes
    • 18.3 Specific Heats of an Ideal Gas
  1. The Second Law of Thermodynamics
    • 19.1 Reversibility and Irreversibility
    • 19.2 The Second Law of Thermodynamics
    • 19.3 Applications of the Second Law
    • 19.4 Entropy and Energy Quality

PART FOUR: ELECTROMAGNETISM

  1. Electric Charge, Force, and Field
    • 20.1 Electric Charge
    • 20.2 Coulomb's Law
    • 20.3 The Electric Field
    • 20.4 Fields of Charge Distributions
    • 20.5 Matter in Electric Fields
  1. Gauss's Law
    • 21.1 Electric Field Lines
    • 21.2 Electric Field and Electric Flux
    • 21.3 Gauss's Law
    • 21.4 Using Gauss's Law
    • 21.5 Fields of Arbitrary Charge Distributions
    • 21.6 Gauss's Law and Conductors
  1. Electric Potential
    • 22.1 Electric Potential Difference
    • 22.2 Calculating Potential Difference
    • 22.3 Potential Difference and the Electric Field
    • 22.4 Charged Conductors
  1. Electrostatic Energy and Capacitors
    • 23.1 Electrostatic Energy
    • 23.2 Capacitors
    • 23.3 Using Capacitors
    • 23.4 Energy in the Electric Field
  1. Electric Current
    • 24.1 Electric Current
    • 24.2 Conduction Mechanisms
    • 24.3 Resistance and Ohm's Law
    • 24.4 Electric Power
    • 24.5 Electrical Safety
  1. Electric Circuits
    • 25.1 Circuits, Symbols, and Electromotive Force
    • 25.2 Series and Parallel Resistors
    • 25.3 Kirchhoff's Laws and Multiloop Circuits
    • 25.4 Electrical Measurements
    • 25.5 Capacitors in Circuits
  1. Magnetism: Force and Field
    • 26.1 What Is Magnetism?
    • 26.2 Magnetic Force and Field
    • 26.3 Charged Particles in Magnetic Fields
    • 26.4 The Magnetic Force on a Current
    • 26.5 Origin of the Magnetic Field
    • 26.6 Magnetic Dipoles
    • 26.7 Magnetic Matter
    • 26.8 Ampère's Law
  1. Electromagnetic Induction
    • 27.1 Induced Currents
    • 27.2 Faraday's Law
    • 27.3 Induction and Energy
    • 27.4 Inductance
    • 27.5 Magnetic Energy
    • 27.6 Induced Electric Fields
  1. Alternating-Current Circuits
    • 28.1 Alternating Current
    • 28.2 Circuit Elements in AC Circuits
    • 28.3 LC Circuits
    • 28.4 Driven RLC Circuits and Resonance
    • 28.5 Power in AC Circuits
    • 28.6 Transformers and Power Supplies
  1. Maxwell's Equations and Electromagnetic Waves
    • 29.1 The Four Laws of Electromagnetism
    • 29.2 Ambiguity in Ampère's Law
    • 29.3 Maxwell's Equations
    • 29.4 Electromagnetic Waves
    • 29.5 Properties of Electromagnetic Waves
    • 29.6 The Electromagnetic Spectrum
    • 29.7 Producing Electromagnetic Waves
    • 29.8 Energy and Momentum in Electromagnetic Waves

PART FIVE: OPTICS

  1. Reflection and Refraction
    • 30.1 Reflection
    • 30.2 Refraction
    • 30.3 Total Internal Reflection
    • 30.4 Dispersion
  1. Images and Optical Instruments
    • 31.1 Images with Mirrors
    • 31.2 Images with Lenses
    • 31.3 Refraction in Lenses: The Details
    • 31.4 Optical Instruments
  1. Interference and Diffraction
    • 32.1 Coherence and Interference
    • 32.2 Double-Slit Interference
    • 32.3 Multiple-Slit Interference and Diffraction Gratings
    • 32.4 Interferometry
    • 32.5 Huygens' Principle and Diffraction
    • 32.6 The Diffraction Limit

PART SIX: MODERN PHYSICS

  1. Relativity
    • 33.1 Speed c Relative to What?
    • 33.2 Matter, Motion, and the Ether
    • 33.3 Special Relativity
    • 33.4 Space and Time in Relativity
    • 33.5 Simultaneity Is Relative
    • 33.6 The Lorentz Transformations
    • 33.7 Energy and Momentum in Relativity
    • 33.8 Electromagnetism and Relativity
    • 33.9 General Relativity
  1. Particles and Waves
    • 34.1 Toward Quantum Theory
    • 34.2 Blackbody Radiation
    • 34.3 Photons
    • 34.4 Atomic Spectra and the Bohr Atom
    • 34.5 Matter Waves
    • 34.6 The Uncertainty Principle
    • 34.7 Complementarity
  1. Quantum Mechanics
    • 35.1 Particles, Waves, and Probability
    • 35.2 The Schrödinger Equation
    • 35.3 Particles and Potentials
    • 35.4 Quantum Mechanics in Three Dimensions
    • 35.5 Relativistic Quantum Mechanics
  1. Atomic Physics
    • 36.1 The Hydrogen Atom
    • 36.2 Electron Spin
    • 36.3 The Exclusion Principle
    • 36.4 Multielectron Atoms and the Periodic Table
    • 36.5 Transitions and Atomic Spectra
  1. Molecules and Solids
    • 37.1 Molecular Bonding
    • 37.2 Molecular Energy Levels
    • 37.3 Solids
    • 37.4 Superconductivity
  1. Nuclear Physics
    • 38.1 Elements, Isotopes, and Nuclear Structure
    • 38.2 Radioactivity
    • 38.3 Binding Energy and Nucleosynthesis
    • 38.4 Nuclear Fission
    • 38.5 Nuclear Fusion
  1. From Quarks to the Cosmos
    • 39.1 Particles and Forces
    • 39.2 Particles and More Particles
    • 39.3 Quarks and the Standard Model
    • 39.4 Unification
    • 39.5 The Evolving Universe

APPENDICES

  • A. Mathematics
  • B. The International System of Units (SI)
  • C. Conversion Factors
  • D. The Elements
  • E. Astrophysical Data
  • Answers to Odd-Numbered Problems

About our author

Richard Wolfson is the Benjamin F. Wissler Professor of Physics at Middlebury College, where he has taught since 1976. He did undergraduate work at MIT and Swarthmore College, and he holds an M.S. from the University of Michigan and Ph.D. from Dartmouth. His ongoing research on the Sun's corona and climate change has taken him to sabbaticals at the National Center for Atmospheric Research in Boulder, Colorado; St. Andrews University in Scotland; and Stanford University.

Rich is a committed and passionate teacher. This is reflected in his many publications for students and the general public, including the video series Einstein's Relativity and the Quantum Revolution: Modern Physics for Nonscientists (The Teaching Company, 1999), Physics in Your Life (The Teaching Company, 2004), Physics and Our Universe: How It All Works (The Teaching Company, 2011), and Understanding Modern Electronics(The Teaching Company, 2014); books Nuclear Choices: A Citizen's Guide to Nuclear Technology (MIT Press, 1993), Simply Einstein: Relativity Demystified (W. W. Norton, 2003), and Energy, Environment, and Climate(W. W. Norton, 3rd edition 2018); and articles for Scientific American and the World Book Encyclopedia.

Outside of his research and teaching, Rich enjoys hiking, canoeing, gardening, cooking, and watercolor painting.

Need help? Get in touch

Mastering

Engage science and engineering students. Mastering® is a flexible platform that supports the way science students learn best: through active, immersive experiences. With tutorials, real-time analytics, and hints and feedback, you can replicate an office-hours visit and prepare learners for the challenges of today and tomorrow.

Pearson+

All in one place. Pearson+ offers instant access to eTextbooks, videos and study tools in one intuitive interface. Students choose how they learn best with enhanced search, audio and flashcards. The Pearson+ app lets them read where life takes them, no wi-fi needed. Students can access Pearson+ through a subscription or their MyLab or Mastering course.

Video
Play
Privacy and cookies
By watching, you agree Pearson can share your viewership data for marketing and analytics for one year, revocable by deleting your cookies.

Build confidence and help every learner achieve more

With Mastering®, you can use your experiences to combine interactive resources and real-world examples, helping students master challenging material, and gain the confidence they need to succeed — both in and out of the classroom.