Artificial Intelligence: A Modern Approach, 4th edition

Published by Pearson (April 28, 2020) © 2021

  • Stuart Russell University of California at Berkeley
  • Peter Norvig


per month

  • Anytime, anywhere learning with the Pearson+ app
  • Easy-to-use search, navigation and notebook
  • Simpler studying with flashcards

  • Hardcover, paperback or looseleaf edition
  • Affordable rental option for select titles
  • Free shipping on looseleafs and traditional textbooks

For courses in artificial intelligence.

A comprehensive, modern guide to the theory and practice of artificial intelligence

Artificial Intelligence explores the full breadth and depth of the field. In-depth coverage of basic and advanced topics provides students with a solid understanding of the frontiers of AI (artificial intelligence) without compromising rigor. A unified approach to AI details how the subfields of AI fit together to build actual, useful programs.

The 4th Edition presents recent advances in AI applications and revisits key topics, such as machine, deep, and transfer learning, multi-agent systems, robotics, natural language processing, privacy, safe AI and more.

Hallmark features of this title

  • Nontechnical learning material introduces major concepts using intuitive explanations, before going into mathematical or algorithmic details. The nontechnical language makes this book accessible to a broader range of readers.
  • A unified approach to AI clearly details how the various subfields of AI fit together to build actual, useful programs.
  • In-depth coverage of both basic and advanced topics provides students with a solid understanding of the frontiers of AI without compromising complexity and depth.
  • The author-maintained website at includes video tutorials, interactive student exercises, and supplemental coding examples and applications in Python, Java and Javascript.

New and updated features of this title

  • NEW: Chapters in this edition feature expanded coverage of probabilistic programming (Ch. 15); multiagent decision making (Ch. 18 with Michael Wooldridge); deep learning (Ch. 21 with Ian Goodfellow); and deep learning for natural language processing (Ch. 24 with Jacob Devlin and Mei-Wing Chang).
  • UPDATED: Definition of AI systems is generalized to assume that the intelligent agent may be uncertain about the true objectives of the human(s) on whose behalf it operates.
  • UPDATED: Machine learning coverage. Robotics material is significantly enhanced to include robots that interact with humans and the application of reinforcement learning to robotics.
  • NEW: Sections address topics such as causality (by Judea Pearl); Monte Carlo search for games and robotics; transfer learning for deep learning in general and for natural language; privacy; fairness; the future of work; and safe AI.
  • NEW: Recent advances in AI applications receive extensive coverage.
  • UPDATED: Coverage of the impact of deep learning methods on the fields of computer vision, natural language understanding, and speech recognition.
  1. Introduction
  2. Intelligent Agents
  3. Solving Problems by Searching
  4. Search in Complex Environments
  5. Adversarial Search and Games
  6. Constraint Satisfaction Problems
  7. Logical Agents
  8. First-Order Logic
  9. Inference in First-Order Logic
  10. Knowledge Representation
  11. Automated Planning
  12. Quantifying Uncertainty
  13. Probabilistic Reasoning
  14. Probabilistic Reasoning over Time
  15. Probabilistic Programming
  16. Making Simple Decisions
  17. Making Complex Decisions
  18. Multiagent Decision Making
  19. Learning from Examples
  20. Learning Probabilistic Models
  21. Deep Learning
  22. Reinforcement Learning
  23. Natural Language Processing
  24. Deep Learning for Natural Language Processing
  25. Robotics
  26. Philosophy and Ethics of AI
  27. The Future of AI

About our authors

Stuart Russell was born in 1962 in Portsmouth, England. He received his B.A. with first-class honours in physics from Oxford University in 1982, and his Ph.D. in computer science from Stanford in 1986. He then joined the faculty of the University of California at Berkeley, where he is a professor and former chair of computer science, director of the Center for Human-Compatible AI, and holder of the Smith–Zadeh Chair in Engineering. In 1990, he received the Presidential Young Investigator Award of the National Science Foundation, and in 1995 he was co-winner of the Computers and Thought Award. He is a Fellow of the American Association for Artificial Intelligence, the Association for Computing Machinery, and the American Association for the Advancement of Science, and Honorary Fellow of Wadham College, Oxford, and an Andrew Carnegie Fellow. He held the Chaire Blaise Pascal in Paris from 2012 to 2014. He has published over 300 papers on a wide range of topics in artificial intelligence. His other books include: The Use of Knowledge in Analogy and Induction, Do the Right Thing: Studies in Limited Rationality (with Eric Wefald), and Human Compatible: Artificial Intelligence and the Problem of Control.

Peter Norvig is currently Director of Research at Google, Inc., and was the director responsible for the core Web search algorithms from 2002 to 2005. He is a Fellow of the American Association for Artificial Intelligence and the Association for Computing Machinery. Previously, he was head of the Computational Sciences Division at NASA Ames Research Center, where he oversaw NASA's research and development in artificial intelligence and robotics, and chief scientist at Junglee, where he helped develop one of the first Internet information extraction services. He received a B.S. in applied mathematics from Brown University and a Ph.D. in computer science from the University of California at Berkeley. He received the Distinguished Alumni and Engineering Innovation awards from Berkeley and the Exceptional Achievement Medal from NASA. He has been a professor at the University of Southern California and a research faculty member at Berkeley. His other books are: Paradigms of AI Programming: Case Studies in Common Lisp, Verbmobil: A Translation System for Face-to-Face Dialog, and Intelligent Help Systems for UNIX.

The two authors shared the inaugural AAAI/EAAI Outstanding Educator award in 2016.

Need help? Get in touch


All in one place. Pearson+ offers instant access to eTextbooks, videos and study tools in one intuitive interface. Students choose how they learn best with enhanced search, audio and flashcards. The Pearson+ app lets them read where life takes them, no wi-fi needed. Students can access Pearson+ through a subscription or their MyLab or Mastering course.

Privacy and cookies
By watching, you agree Pearson can share your viewership data for marketing and analytics for one year, revocable by deleting your cookies.

Pearson eTextbook: What’s on the inside just might surprise you

They say you can’t judge a book by its cover. It’s the same with your students. Meet each one right where they are with an engaging, interactive, personalized learning experience that goes beyond the textbook to fit any schedule, any budget, and any lifestyle.