High Speed Signal Propagation: Advanced Black Magic, 1st edition

Published by Pearson (February 24, 2003) © 2003

  • Howard Johnson Olympic Technology Group, Redmond, WA
Products list

Details

  • A print text
  • Free shipping
  • Also available for purchase as an ebook from all major ebook resellers, including InformIT.com

This advanced-level reference presents a complete and unified theory of signal propagation for all metallic media from cables to pcb traces to chips. It includes numerous examples, pictures, tables and wide-ranging discussion of the high-speed properties of transmission lines.

Preface.
Glossary of Symbols.
1. Fundamentals.
Impedance of Linear, Time-Invariant, Lumped-Element Circuits. Power Ratios. Rules of Scaling. The Concept of Resonance. Extra for Experts: Maximal Linear System Response to a Digital Input.

2. Transmission Line Parameters.
Telegrapher's Equations. Derivation of Telegrapher's Equations. Ideal Transmission Line. DC Resistance. DC Conductance. Skin Effect. Skin-Effect Inductance. Modeling Internal Impedance. Concentric-Ring Skin-Effect Model. Proximity Effect. Surface Roughness. Dielectric Effects. Impedance in Series with the Return Path. Slow-Wave Mode On-Chip.

3. Performance Regions.
Signal Propagation Model. Hierarchy of Regions. Necessary Mathematics: Input Impedance and Transfer Function. Lumped-Element Region. RC Region. LC Region (Constant-Loss Region). Skin-Effect Region. Dielectric Loss Region. Waveguide Dispersion Region. Summary of Breakpoints Between Regions. Equivalence Principle for Transmission Media. Scaling Copper Transmission Media. Scaling Multimode Fiber-Optic Cables. Linear Equalization: Long Backplane Trace Example. Adaptive Equalization: Accelerant Networks Transceiver.

4. Frequency-Domain Modeling.
Going Nonlinear. Approximations to the Fourier Transform. Discrete Time Mapping. Other Limitations of the FFT. Normalizing the Output of an FFT Routine. Useful Fourier Transform-Pairs. Effect of Inadequate Sampling Rate. Implementation of Frequency-Domain Simulation. Embellishments. Checking the Output of Your FFT Routine.

5. Pcb (printed-circuit board) Traces.
Pcb Signal Propagation. Limits to Attainable Distance. Pcb Noise and Interference. Pcb Connectors. Modeling Vias. The Future of On-Chip Interconnections.

6. Differential Signaling.
Single-Ended Circuits. Two-Wire Circuits. Differential Signaling. Differential and Common-Mode Voltages and Currents. Differential and Common-Mode velocity. Common-Mode Balance. Common-Mode Range. Differential to Common-Mode Conversion. Differential Impedance. Pcb Configurations. Pcb Applications. Intercabinet Applications. LVDS Signaling.

7. Generic Building-Cabling Standards.
Generic Cabling Architecture. SNR Budgeting. Glossary of Cabling Terms. Preferred Cable Combinations. FAQ: Building-Cabling Practices. Crossover Wiring. Plenum-Rated Cables. Laying cables in an Uncooled Attic Space. FAQ: Older Cable Types.

8. 100-Ohm Balanced Twisted-Pair Cabling.
UTP Signal Propagation. UTP Transmission Example: 10BASE-T. UTP Noise and Interference. UTP Connectors. Issues with Screening. Category-3 UTP at Elevated Temperature.

9. 150-Ohm STP-A Cabling.
150-( STP-A Signal Propagation. 150-( STP-A Noise and Interference. 150-( STP-A: Skew. 150-( STP-A: Radiation and Safety. 150-( STP-A: Comparison with UTP. 150-( STP-A Connectors.

10. Coaxial Cabling.
Coaxial Signal Propagation. Coaxial Cable Noise and Interference. Coaxial Cable Connectors.

11. Fiber-Optic Cabling.
Making Glass Fiber. Finished Core Specifications. Cabling the Fiber. Wavelengths of Operation. Multimode Glass Fiber-Optic Cabling. Single-Mode Fiber-Optic Cabling.

12. Clock Distribution.
Extra Fries, Please. Arithmetic of Clock Skew. Clock Repeaters. Stripline vs. Microstrip Delay. Importance of Terminating Clock Lines. Effect of Clock Receiver Thresholds. Effect of Split Termination. Intentional Delay Adjustments. Driving Multiple Loads with Source Termination. Daisy-Chain Clock Distribution. The Jitters. Power Supply Filtering for Clock Sources, Repeaters, and PLL Circuits. Intentional Clock Modulation. Reduced-Voltage Signaling. Controlling Crosstalk on Clock Lines. Reducing Emissions.

13. Time-Domain Simulation Tools and Methods.
Ringing in a New Era. Signal Integrity Simulation Process. The Underlying Simulation Engi

Need help? Get in touch