Skip to main content
Pearson+ LogoPearson+ Logo
Ch. 2 - Transmission Genetics
Sanders - Genetic Analysis: An Integrated Approach 3rd Edition
Sanders3rd EditionGenetic Analysis: An Integrated ApproachISBN: 9780135564172Not the one you use?Change textbook
Chapter 2, Problem 41b

Humans vary in many ways from one another. Among many minor phenotypic differences are the following five independently assorting traits that (sort of) have a dominant and a recessive phenotype: (1) forearm hair (alleles F and f )—the presence of hair on the forearm is dominant to the absence of hair on the forearm; (2) earlobe form (alleles E and e)—unattached earlobes are dominant to attached earlobes; (3) widow's peak (alleles W and w)—a distinct 'V' shape to the hairline at the top of the forehead is dominant to a straight hairline; (4) hitchhiker's thumb (alleles H and h)—the ability to bend the thumb back beyond vertical is dominant and the inability to do so is recessive; and (5) freckling (alleles D and d)—the appearance of freckles is dominant to the absence of freckles. In reality, the genetics of these traits are more complicated than single gene variation, but assume for the purposes of this problem that the patterns in families match those of other single-gene variants.
If a couple with the genotypes Ff Ee Ww Hh Dd and Ff Ee Ww Hh Dd have children, what is the chance the children will inherit the following characteristics?


four dominant traits and one recessive trait

Verified step by step guidance
1
Step 1: Identify the genotypes of the parents. Both parents have the genotype Ff Ee Ww Hh Dd, meaning they are heterozygous for all five traits. Each trait follows Mendelian inheritance, with dominant and recessive alleles segregating independently.
Step 2: Determine the probability of inheriting each trait. For each heterozygous pair (e.g., Ff), the offspring have a 50% chance of inheriting the dominant allele (F) and a 50% chance of inheriting the recessive allele (f). This applies to all five traits.
Step 3: Calculate the probability of inheriting four dominant traits and one recessive trait. To do this, consider all possible combinations where four traits are dominant and one is recessive. For example, the child could inherit F, E, W, H (dominant) and d (recessive), or F, E, W, h (dominant) and D (recessive), and so on.
Step 4: Use the binomial probability formula to calculate the likelihood of each combination. For each trait, the probability of inheriting a dominant allele is 0.5, and the probability of inheriting a recessive allele is 0.5. Multiply the probabilities for the four dominant traits and one recessive trait in each combination.
Step 5: Sum the probabilities of all valid combinations. Since the traits assort independently, the total probability of inheriting four dominant traits and one recessive trait is the sum of the probabilities for all combinations where this condition is met.

Verified video answer for a similar problem:

This video solution was recommended by our tutors as helpful for the problem above.
Video duration:
3m
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Mendelian Genetics

Mendelian genetics is the study of how traits are inherited through generations based on the principles established by Gregor Mendel. It involves understanding dominant and recessive alleles, where dominant alleles mask the expression of recessive ones. This framework helps predict the probability of offspring inheriting specific traits based on parental genotypes.
Recommended video:
Guided course
03:45
Descriptive Genetics

Punnett Square

A Punnett square is a diagram used to predict the genetic makeup of offspring from two parents. By organizing the possible gametes from each parent, it allows for the visualization of potential genotype combinations. This tool is essential for calculating the probabilities of inheriting specific traits, such as dominant or recessive characteristics.
Recommended video:
Guided course
18:27
Chi Square Analysis

Independent Assortment

Independent assortment is a principle stating that alleles for different traits segregate independently of one another during gamete formation. This means the inheritance of one trait does not influence the inheritance of another, allowing for a variety of combinations in offspring. Understanding this concept is crucial for predicting the likelihood of multiple traits being inherited together.
Recommended video:
Guided course
04:58
Gamete Genetics and Independent Assortment
Related Practice
Textbook Question

Alkaptonuria is an infrequent autosomal recessive condition. It is first noticed in newborns when the urine in their diapers turns black upon exposure to air. The condition is caused by the defective transport of the amino acid phenylalanine through the intestinal walls during digestion. About 4 people per 1000 are carriers of alkaptonuria.

Sara and James had never heard of alkaptonuria and were shocked to discover that their first child had the condition. Sara's sister Mary and her husband, Frank, are planning to have a family and are concerned about the possibility of alkaptonuria in one of their children.

The four adults (Sara, James, Mary, and Frank) seek information from a neighbor who is a retired physician. After discussing their family histories, the neighbor says, 'I never took genetics, but I know from my many years in practice that Sara and James are both carriers of this recessive condition. Since their first child had the condition, there is a very low chance that the next child will also have it, because the odds of having two children with a recessive condition are very low. Mary and Frank have no chance of having a child with alkaptonuria because Frank has no family history of the condition.' The two couples each have babies and both babies have alkaptonuria.


What is the chance that the third child of Sara and James will be free of the condition?

559
views
Textbook Question

Alkaptonuria is an infrequent autosomal recessive condition. It is first noticed in newborns when the urine in their diapers turns black upon exposure to air. The condition is caused by the defective transport of the amino acid phenylalanine through the intestinal walls during digestion. About 4 people per 1000 are carriers of alkaptonuria.

Sara and James had never heard of alkaptonuria and were shocked to discover that their first child had the condition. Sara's sister Mary and her husband, Frank, are planning to have a family and are concerned about the possibility of alkaptonuria in one of their children.

The four adults (Sara, James, Mary, and Frank) seek information from a neighbor who is a retired physician. After discussing their family histories, the neighbor says, 'I never took genetics, but I know from my many years in practice that Sara and James are both carriers of this recessive condition. Since their first child had the condition, there is a very low chance that the next child will also have it, because the odds of having two children with a recessive condition are very low. Mary and Frank have no chance of having a child with alkaptonuria because Frank has no family history of the condition.' The two couples each have babies and both babies have alkaptonuria.


The couples are worried that one of their grandchildren will inherit alkaptonuria. How would you assess the risk that one of the offspring of a child with alkaptonuria will inherit the condition?

493
views
Textbook Question

Humans vary in many ways from one another. Among many minor phenotypic differences are the following five independently assorting traits that (sort of) have a dominant and a recessive phenotype: (1) forearm hair (alleles F and f )—the presence of hair on the forearm is dominant to the absence of hair on the forearm; (2) earlobe form (alleles E and e)—unattached earlobes are dominant to attached earlobes; (3) widow's peak (alleles W and w)—a distinct 'V' shape to the hairline at the top of the forehead is dominant to a straight hairline; (4) hitchhiker's thumb (alleles H and h)—the ability to bend the thumb back beyond vertical is dominant and the inability to do so is recessive; and (5) freckling (alleles D and d)—the appearance of freckles is dominant to the absence of freckles. In reality, the genetics of these traits are more complicated than single gene variation, but assume for the purposes of this problem that the patterns in families match those of other single-gene variants.

If a couple with the genotypes Ff Ee Ww Hh Dd and Ff Ee Ww Hh Dd have children, what is the chance the children will inherit the following characteristics?


the same phenotype as the parents

406
views
Textbook Question

Humans vary in many ways from one another. Among many minor phenotypic differences are the following five independently assorting traits that (sort of) have a dominant and a recessive phenotype: (1) forearm hair (alleles F and f )—the presence of hair on the forearm is dominant to the absence of hair on the forearm; (2) earlobe form (alleles E and e)—unattached earlobes are dominant to attached earlobes; (3) widow's peak (alleles W and w)—a distinct 'V' shape to the hairline at the top of the forehead is dominant to a straight hairline; (4) hitchhiker's thumb (alleles H and h)—the ability to bend the thumb back beyond vertical is dominant and the inability to do so is recessive; and (5) freckling (alleles D and d)—the appearance of freckles is dominant to the absence of freckles. In reality, the genetics of these traits are more complicated than single gene variation, but assume for the purposes of this problem that the patterns in families match those of other single-gene variants.

If a couple with the genotypes Ff Ee Ww Hh Dd and Ff Ee Ww Hh Dd have children, what is the chance the children will inherit the following characteristics?


all recessive traits

504
views
Textbook Question

Humans vary in many ways from one another. Among many minor phenotypic differences are the following five independently assorting traits that (sort of) have a dominant and a recessive phenotype: (1) forearm hair (alleles F and f )—the presence of hair on the forearm is dominant to the absence of hair on the forearm; (2) earlobe form (alleles E and e)—unattached earlobes are dominant to attached earlobes; (3) widow's peak (alleles W and w)—a distinct 'V' shape to the hairline at the top of the forehead is dominant to a straight hairline; (4) hitchhiker's thumb (alleles H and h)—the ability to bend the thumb back beyond vertical is dominant and the inability to do so is recessive; and (5) freckling (alleles D and d)—the appearance of freckles is dominant to the absence of freckles. In reality, the genetics of these traits are more complicated than single gene variation, but assume for the purposes of this problem that the patterns in families match those of other single-gene variants.

If a couple with the genotypes Ff Ee Ww Hh Dd and Ff Ee Ww Hh Dd have children, what is the chance the children will inherit the following characteristics?


the genotype Ff EE Ww hh dd

457
views
Textbook Question

In chickens, the presence of feathers on the legs is due to a dominant allele (F), and the absence of leg feathers is due to a recessive allele (f). The comb on the top of the head can be either pea-shaped, a phenotype that is controlled by a dominant allele (P), or a single comb controlled by a recessive allele (p). The two genes assort independently. Assume that a pure-breeding rooster that has feathered legs and a single comb is crossed with a pure-breeding hen that has no leg feathers and a pea-shaped comb. The F₁ are crossed to produce the F₂. Among the resulting F₂, however, only birds with a single comb and feathered legs are allowed to mate. These chickens mate at random to produce F₃ progeny. What are the expected genotypic and phenotypic ratios among the resulting F₃ progeny?

1208
views
1
comments